DOI QR코드

DOI QR Code

Partial Purification of Lectin from Mycoparasitic Species of Trichoderma

  • Singh, Tanuja (Glyco-Immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University) ;
  • Saikia, Ratul (National Bureau of Agriculturally Important Microorganisms) ;
  • Arora, Dilip K. (National Bureau of Agriculturally Important Microorganisms)
  • Published : 2005.12.01

Abstract

Trichoderma species/isolates exhibited varied degree of agglutination on sclerotial (Sc) and hyphal (Hy) surface of Macrophomina phaseolina. The agglutination efficiencies on Sc and Hy ranged from $11\;to\;57\%$. Isolates of T. harzianum (Th) and T. viride (Tv) showed greater agglutination on Sc ($23-57\%$) and Hy ($16-47\%$). Different enzymes (trypsin, pepsin, proteinase k, a-chymotrypsin, lyticase and glucosidase) and inhibitors (tunicamycin, cycloheximide, brefeldin A, sodium azide, dithiothreitol and SDS) reduced the agglutination potential of conidia of Th-23/98 and Tv-25/98; however, the extent of response varied greatly in different treatments. Different fractions of Th-23/98 and Tv-25/98 exhibited haemagglutinating reaction with human blood group A, B, AB and O. Haemagglutinating activity was inhibited by different sugars and glycoproteins tested. Crude haemagglutinating protein from outer cell wall protein fraction of Th-23/98 and Tv-25/98 were eluted on Sephadex G-100 column. Initially Th-23/98 and Tv-25/98 exhibited two peaks showing no agglutination activity; however, lectin activity was detected in the third peak. Similar to crude lectin, the purified lectin also exhibited haemagglutinating activity with different erythrocyte source. SDS-PAGE analysis of partially purified lectin revealed single band with an estimated molecular mass of 55 and 52 kDa in Th-23/98 and Tv-25/98, respectively. Trypsin, chymotrypsin and b-1,3-glucanase totally inhibited lectin activity. Similarly, various pH also affected the haemagglutinating activity of Th-23/98 and Tv-25/98. From the present observations, it can be concluded that the recognition/attachment of mycoparasite (T. harzianum and T. viride) to the host surface (M. phaseolina) may be most likely due to lectin-carbohydrate interaction.

References

  1. Al-Mahmood, S., Colin, S. and Bonaly, R. 1991. Kluyveromyces bulgaricus yeast lectins: isolation of two galactose-specific lectin forms from the yeast cell wall. J. Biol. Chem. 266:20882-20887
  2. Barak, R. and Chet, I. 1990. Lectin of Sclerotium rolfsii: its purification and possible function in fungal-fungal interaction. Appl. Bacteriol. 69:101-112 https://doi.org/10.1111/j.1365-2672.1990.tb02917.x
  3. Barak, R., Elad, Y. and Chet, I. 1986. The properties of L-fructose binding agglutinin associated with the cell wall of Rhizoctonia solani. Arch. Microbiol. 144:346-349 https://doi.org/10.1007/BF00409883
  4. Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Candy, L., Peumans, W. J., Menu-Bouaouiche, L., Astoul, C. H., Van Damme, J., Van Damme, E. J. M. and Rouge, P. 2001. The Gal/GalNAc-specific lectin from the plant pathogenic basidiomycete Rhizoctonia solani is a member of the ricin-B family. Biochem. Biophys. Res. Commun. 282:655-661 https://doi.org/10.1006/bbrc.2001.4626
  6. Dubray, G. and Bezard, G. 1982. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal. Biochem. 119:325-329 https://doi.org/10.1016/0003-2697(82)90593-0
  7. Glandorf, D. C. M., Sluis, I. V., Bakkers, P. A. H. M. and Schippers, B. 1994. Agglutination adherence and root colonization by fuorescent Pseudomonads. Appl. Environ. Microbiol. 60:1726-1733
  8. Elad, Y. 1995. Mycoparasitism. In: Pathogenesis and Host Specificity in Plant Diseases, Histopathological, Biochemical Genetic and Molecular basis, ed. by K. Kohmoto, U. S. Singh and R. P. Singh, Vol II. Eukaryotes, pp. 289-307. Pergamon Elsevier Science Ltd., Oxford, UK
  9. Epstein, L. and Nicholson, R. L. 1997. Adhesion of spores and hyphae to plant surfaces. In: The Mycota (V Part). A Plant Relationships, ed. by Carroll/Tudzynski. Springer-Verlag, Berlin
  10. Herrera-Estrella, A. and Chet, I. 2002. The biological control agent Trichoderma from fundamentals to applications. In: Fungal Biotechnology, ed. by Arora, D. K., Bridge, P. D. and Bhatnagar., D. Marcel Dekker, New York, USA
  11. Inbar, J. and Chet, I. 1992. Biomimics of fungal cell-cell recognition by use of lectin-coated nylon fibres. J. Bacteriol. 174:1055-1059 https://doi.org/10.1128/jb.174.3.1055-1059.1992
  12. Inbar, J. and Chet, I. 1994. A newly isolated lectin from the plant pathogenic fungus Sclerotium rolfsii: purification characterization and role in mycoparasitism. Microbiology 140:651-657 https://doi.org/10.1099/00221287-140-3-651
  13. Inbar, J. and Chet, I. 1995. The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum. Microbiology 141:2823-2829 https://doi.org/10.1099/13500872-141-11-2823
  14. Inbar, J. and Chet, I. 1996. The role of lectins in recognition and adhesion of the mycoparasitic fungus Trichoderma spp. to its host. Adv. Exp. Med. Biol. 408:229-231 https://doi.org/10.1007/978-1-4613-0415-9_27
  15. Inbar, J. and Chet, I. 1997. Lectins and Biocontrol. Crit. Rev. Biotechnol. 17:1-20 https://doi.org/10.3109/07388559709146604
  16. Ishikawa, F. and Oishi, K. 1989. Production purification and characterization of Neurospora sitophila lectin. Agric. Biol. Chem. 53:1769-1776 https://doi.org/10.1271/bbb1961.53.1769
  17. Jana, T. K., Srivastava, A. K. and Arora, D. K. 1999. Agglutination potential of Pseudomonas fluorescens in relation to C loss germination and colonization of Macrophomina phaseolina. Soil Biol. Biochem. 32:511-519 https://doi.org/10.1016/S0038-0717(99)00180-7
  18. Jana, T. K., Srivastava, A. K., Csery, K. and Arora, D. K. 2000. Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion. Can. J. Microbiol. 46:28-37 https://doi.org/10.1139/cjm-46-1-28
  19. Jones, G. E. B. 1994. Fungal adhesion. Mycol. Res. 98:961-981 https://doi.org/10.1016/S0953-7562(09)80421-8
  20. Kawagishi, H. and Mori, H. 1991. Chemical modification and NMR studies on a mushroom lectin Ischnoderma resinosum agglutinin(IRA). Biochim. et Biophys. Acta 1076:179-186 https://doi.org/10.1016/0167-4838(91)90263-Y
  21. Kellens, J. T. C., Allen, A. K. and Peumans, W. J. 1989. Isolation and characterization of lectins from Rhizoctonia crocorum and Athelia rolfsii. J. Gen. Microbiol. 135:3127-3132
  22. Kellens, J. T. C., Allen, A. K. and Peumans, W. J. 1990. Developmental accumulation of lectin in Rhizoctonia solani a potential role as a storage protein. J. Gen. Microbiol. 136:2489-2496 https://doi.org/10.1099/00221287-136-12-2489
  23. Kellens, J. T. C., Goldstein, I. J. and Peumans, W. J. 1992. Lectins in different members of the Sclerotiniaceae. Mycol. Res. 96:495-502 https://doi.org/10.1016/S0953-7562(09)81097-6
  24. Kwon, Y. H. and Epstein, L. 1997. Isolation and composition of the 90 kDa glycoproteins associated with adhesion of Nectria haematococca macroconidia. Physiol. Mol. Pl. Pathol. 51:63-74 https://doi.org/10.1006/pmpp.1997.0103
  25. Kuo, K. and Hoch, H. C. 1996. Visualization of the extracellular matrix surrounding pycnidiospores germlings and appressoria of Phyllosticta ampelicida. Mycologia 87:759-771 https://doi.org/10.2307/3760852
  26. Laemmli, U. K. 1970. Cleavage of structural protein during the assembly of bacteriophage T4. Nature 227:680-685 https://doi.org/10.1038/227680a0
  27. Lis, H., Belenky, D., Rabinkov, A. and Sharon, N. 1994. Purification of lectins and determination of their carbohydrate specificity. In Cell Biology. A laboratory Handbook. Vol 3, ed by Cellis, C.E., pp. 332-338
  28. Lis, H. and Sharon, N. 1998. Carbohydrate-Specific Proteins That Mediate Cellular Recognition. Chem. Rev. 98:637-674 https://doi.org/10.1021/cr940413g
  29. Lockhart, C. M., Rowell, P. and Stewart, W. D. P. 1988. Phytohaemaglutinin from TM nitrogen fixing lichens Peltigera canina and P. polydactyla. FEMS Microbiol. 3:127-130 https://doi.org/10.1111/j.1574-6968.1978.tb01899.x
  30. Makela, O. 1957. A method for distinguishing between a-and b-glycosides by the use of plant haemagglutinins (lectins). Nature 184:111-113 https://doi.org/10.1038/184111b0
  31. Manocha, M. S. and Chen, Y. 1990. Specificity of attachment of fungal parasites to their hosts. Can. J. Microbiol. 36:69-76 https://doi.org/10.1139/m90-014
  32. Manocha, M. S. and Sahai, A. S. 1993. Mechanisms of recognition of necrotrophic and biotrophic mycoparasites. Can. J. Microbiol. 39:269-274 https://doi.org/10.1139/m93-039
  33. Manocha, M. S., Xiong, D. and Govindswamy, V. 1997. Isolation and partial characterization of a complementary protein from the mycoparasite Piptocephalis virginiana that specifically binds to two glycoproteins at the host cell surface. Can. J. Microbiol. 43:625-632 https://doi.org/10.1139/m97-089
  34. Mercure, E. W., Kunow, H. and Nicholson, R. L. 1994. Adhesion of Colletotrichum graminicola conidia to corn leaves: a requirement for disease development. Physiol. Mol. Pl. Pathol. 46:121-135 https://doi.org/10.1006/pmpp.1995.1010
  35. Mihail, J. D. and Taylor, S. D. 1995. Interpreting variability among isolates of Macrophomina phaseolina in pathogenicity pycnidium production and chlorate utilization. Can. J. Bot. 73:1596-1603 https://doi.org/10.1139/b95-172
  36. Neethling, D. and Nevalainen, H. 1996. Mycoparasitic species of Trichoderma produce lectins. Can. J. Microbiol. 42:141-146 https://doi.org/10.1139/m96-022
  37. Nordbring-Hertz, B. and Mattiasson, B. 1979. Action of nematode trapping fimgus show lectin mediated host microorganism interaction. Nature 281:477-479 https://doi.org/10.1038/281477a0
  38. Okon, Y., Chet, I. and Henis, Y. 1973. Effects of lactose, ethanol and cycloheximide on the translocation pattern of radioactive compounds and on sclerotium formation in Sclerotium rolfsii. J. Gen. Microbiol. 74:251-258 https://doi.org/10.1099/00221287-74-2-251
  39. Omero, C., Inbar, J., Rocha-Ramirez, V., Herrera-Estrella, A., Chet, I. and Horwitz, B. A. 1999. G protein activators and cAMP promote mycoparasitic behaviour in Trichoderma harzianum. Mycol. Res. 103:1637-1642 https://doi.org/10.1017/S0953756299008886
  40. Rosen, S., Bergstorm, J., Karlsson, K. A. and Tunlid, A. 1996. A multispecific saline soluble lectin from the parasitic fungus Arthrobotrys oligospora. Eur. J. Biochem. 238:830-837 https://doi.org/10.1111/j.1432-1033.1996.0830w.x
  41. Rosen, S., Sjollema, K., Veenhuis, M. and Tunlid, A. 1997. A cytoplasmic lectin produced by the fimgus Arthrobotrys oligospora fimctions as a storage protein during saprophytic and parasitic growth. Microbiology 143:2593-2604 https://doi.org/10.1099/00221287-143-8-2593
  42. Sharon, N. and Lis, H. 1989. Lectins as cell recognition molecules. Science 246:227-234 https://doi.org/10.1126/science.2552581
  43. Singh, T. 2002. Specific and non-specific mechanisms of recognition between Trichoderma and Macrophomina phaseolina interaction. Ph.D. Thesis, Banaras Hindu University, India
  44. Singh, T., Saikia, R., Jana, T. K. and Arora, D. K. 2004. Hydrophobicity and Surface Electrostatic Charge of the Mycoparasitic Trichoderma species. Mycol. Prog. 12:103-111
  45. Srivastava, A. K., Arora, D. K., Gupta, S., Pandey, R. R. and Lee, M. W. 1996. Diversity of potential microbiol parasites colonizing sclerotia of Macrophomina phaseolina in soil. Biol. Fert. soils 22:136-140 https://doi.org/10.1007/BF00384445
  46. Srivastava, A. K., Singh, T., Jana, T. K. and Arora, D. K. 2001. Microbial colonization of Macrophomina phaseolina and suppression of charcoal rot of chickpea. In: Microbes and Plants, ed. by A. Sinha, pp. 269-319. Commonwealth Publishers, New Delhi, India
  47. Sueyoshi, S., Tsuji, T. and Osawa, T. 1985. Purification and characterization of four isolectins of mushroom (Agaricus bisporus). Biol. Chem. 366:213-221
  48. Tronchin, G., Bouchara, J. P., Ferron, M., Larcher, G. and Chabasse, D. 1995. Cell surface properties of Aspergillus fumigatus conidia: correlation between adherence agglutination and rearrangements of the cell wall. Can. J. Microbiol. 41:714-721 https://doi.org/10.1139/m95-098
  49. Tunlid, A., Jansson, H. B. and Nordbring-Hertz, B. 1992. Fungal attachment to nematode. Mycol. Res. 96:401-412 https://doi.org/10.1016/S0953-7562(09)81082-4
  50. van Damme, E. J. M., Peumans, W. J., Pusztai, A. and Bardoz, S. 1998. In Handbook of Plant Lectins: Properties and Biomedical Applications. John Wiley & Sons, Chichester UK
  51. Weisniewski, J. P. and Delmotte, F. M. 1996. Modulation of carbohydrate-binding capacities and attachment ability of Bradyrhizobium sp. (Lupinus) to white lupin roots. Can. J. Microbiol. 42:234-242 https://doi.org/10.1139/m96-035
  52. Wu, A. M., Wu, J. H., Ming-Sung, T., Hegde, G. V., Inamdar, S. R., Swamy, B. M. and Herp, A. 2001. Carbohydrate specificity of a lectin isolated from the fimgus Sclerotium rolfsii. Life Science 69:2039-2050 https://doi.org/10.1016/S0024-3205(01)01297-8
  53. Zhuang, C., Murata, T., Usui, T., Kawagishi, H. and Kobayashi, K. 1996. Purification and characterization of a lectin from the toxic mushroom Amanita pantherina. Biochim. et Biophys. Acta 1291:40-44 https://doi.org/10.1016/0304-4165(96)00042-6

Cited by

  1. Further screening ofAspergillusspecies for occurrence of lectins and their partial characterization vol.50, pp.1, 2010, https://doi.org/10.1002/jobm.200900299