Position Tracking Control of an Autonomous Helicopter by an LQR with Neural Network Compensation

자율 주행 헬리콥터의 위치 추종 제어를 위한 LQR 제어 및 신경회로망 보상 방식

  • 엄일용 (충남대학교 메카트로닉스공학과) ;
  • 석진영 (충남대학교 항공우주공학과) ;
  • 정슬 (충남대학교 메카트로닉스공학과)
  • Published : 2005.11.01


In this paper, position tracking control of an autonomous helicopter is presented. Combining an LQR method and a proportional control forms a simple PD control. Since LQR control gains are set for the velocity control of the helicopter, a position tracking error occurs. To minimize a position tracking error, neural network is introduced. Specially, in the frame of the reference compensation technique for teaming neural network compensator, a position tracking error of an autonomous helicopter can be compensated by neural network installed in the remotely located ground station. Considering time delay between an auto-helicopter and the ground station, simulation studies have been conducted. Simulation results show that the LQR with neural network performs better than that of LQR itself.


  1. M. Akesson, E. Gustafson and K. H. Johansson. 'Control design for a helicopter lab process' IFAC. 13th Triennial World congress, pp.41-46,1996
  2. J. E. Gibson, Nonlinear Automatic Control, Mcgraw Hill Book Company, 1963
  3. 박두환, 이준탁, 하홍곤, '신경망의 역전파 알고리즘을 이용한 모형 헬리콥터의 자세제어,' Proceedings of the 13th KACC, October 1998
  4. P. A. Gill and M. Battipede, 'A comparative design of a MIMO neural adaptive rate damping for a nonlinear helicopter model,' ESANN'2000 European Symposium on Artificial Neural Networks, pp. 159-164,2000
  5. C. Cavalcante, J. Cardoso, J. G. Ramos, O. R. Neves, 'Design and tuning of a helicopter fuzzy controller,' IEEE International Conference on Fuzzy Systems, pp.1549-1554, 1995
  6. T. G Amaral, M. M. Crisostomo, 'Automatic helicopter motion control using fuzzy logic fuzzy systems,' IEEE International Fuzzy systems Conference, pp. 860-863, 2001
  7. T. G Amaral, M. M. Crisotomo, 'Neuro-fuzzy controller for helicopter motion control,' IEEE International Conference on Fuzzy Systems, pp. 594 -597, 2001
  8. T. G. Amaral, M. M. Crisostomo, V. F. Pires, 'Helicopter motion control using adaptive neuro-fuzzy inference controller,' IEEE IECON, pp. 2090 -2095, 2002
  9. 임규만, 함운철, 'Hovering에서의 헬리콥터 자세제어를 위한 슬라이딩 모드 제어,' Journal of Control. Automation, and Systems Engineering, pp. 563-568, vol. 3, no. 6, 1997
  10. A. Bogdanov and M. Carlsson, 'State dependent Riccati equation control of a small unmanned helicopter,' AIAA Guidance, Navigation, and Control conference, 2003
  11. A. Bogdanov and E. Wan, 'SDRE control with nonlinear feedforward compensation for a small unmanned helicopter,' AIAA Unmanned Unlimited systems, technologies, and operations, 2003
  12. M. Donald, Automatic Flight Control System, Prentice Hall, 1990
  13. C. L. Phillips, Digital Control System Analysis and Design, Prentice Hall, 1995
  14. S. Jung and T. C. Hsia, 'Neural network inverse control techniques for PD controlled robot manipulator', pp. 305-314, vol. 19, no. 3, ROBOTICA, 2002