Arsenic Adsorption onto Pseudomonas aeruginosa Cell Surface

Pseudomonas aeruginosa 표면에 대한 비소의 흡착특성

  • Lee Jong-Un (Microbial Geochemistry Lab.(MIGEL), Department of Geosystem Engineering, Chonnam National University) ;
  • Park Hyun-Sung (Microbial Geochemistry Lab.(MIGEL), Department of Geosystem Engineering, Chonnam National University)
  • 이종운 (전남대학교 지구시스템공학과 미생물지구화학연구실) ;
  • 박현성 (전남대학교 지구시스템공학과 미생물지구화학연구실)
  • Published : 2005.12.01

Abstract

Adsorption experiments for As(V) and As(III) onto the surfaces of aerobic Pseudomonas aeruginosa, which can be readily isolated from natural media, were conducted under nutrient-absent conditions. While a small amount of As(III) was adsorbed on the bacterial cell surfaces, As(V) was not effectively removed from the solution through adsorption. The result was likely due to the electrostatic repulsion between anionic compounds of aqueous As(V) and cell surfaces of f aeruginosa. However, the bacteria forming biofilm reduced a large amount of aqueous As(V) to As(III), which indicated that microorganisms in most oligotrophic, natural geologic settings can mediate the behavior of aqueous As. Biobarriers designed to remove the various heavy metals in contaminant plume may practically lead to the enhancement of toxicity and mobility of As.

Keywords

arsenic;adsorption;bacteria;biobarrier

References

  1. 민정식, 정양욱, 이현주, 이동남 (1997) 광산지역 광해조사와 대책연구. 자원연구소 연구보고서. KR-97 (C)-32, 자원연구소, 479p
  2. Bexfield, L.M. and Plummer, L.N. (2003) Occurrence of arsenic in ground water of the Middle Rio Grande Basin, central New Mexico. In Welch, A.H. and Stol-lenwerk, K.G. (eds.) Arsenic in ground water -geochemistry and occurrence. Kluwer, Boston, p. 295-327
  3. Chowdhury, T.R., Basu, G.K., Mandal, B.K., Biswas, B.K., Samanta, G., Chowdhury, U.K., Chanda, C.R., Lodh, D., Roy, S.L., Saha, K.C., Roy, S., Kabir, S., Qua-mruzzaman, Q. and Chakraborti, D. (1999) Arsenic poisoning in the Ganges delta. Nature, v. 401, p. 545-546 https://doi.org/10.1038/44052
  4. Costerton, J.W., Lewandowski, Z., DeBeer, D., Caldwell, D., Korber, D. and James, G. (1994) Biofilms, the customized microniche. J. Bacterid., v. 176, p. 2137-2142 https://doi.org/10.1128/jb.176.8.2137-2142.1994
  5. Das, D., Samanta, G., Mandal, B.K., Chowdhury, T.R., Chanda, C.R., Chowdhury, P.P., Basu, G.K. and Chakraborti, D. (1996) Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Hlth., v. 18, p. 5-16 https://doi.org/10.1007/BF01757214
  6. Rang, S.-Y, Lee, J.-U. and Kim, K.-W. (2005) A study of the biosorption characteristics of $Co^{2+}$ in wastewater using Pseudomonas aeruginosa. Key Eng. Mater., v. 277-279, p. 418-423 https://doi.org/10.4028/www.scientific.net/KEM.277-279.418
  7. Lee, J.-U., Lee, S.-W. and Kim, K.-W. (2004) The effects of indigenous bacteria on arsenic geochemistry in an abandoned gold mine sediment. In Abstracts from the 32nd International Geological Congress. Italy, p. 455
  8. Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, R and Rahman, M. (1998) Arsenic poisoning of Bangladesh groundwater. Nature, v. 395, p. 338 https://doi.org/10.1038/26387
  9. Oremland, R.S. and Stolz, J.F. (2003) The ecology of arsenic. Science, v. 300, p. 939-944 https://doi.org/10.1126/science.1081903
  10. Smedley, P.L. (2003) Arsenic in groundwater - south and east Asia. In Welch, A.H. and Stollenwerk, K.G. (eds.) Arsenic in ground water - geochemistry and occurrence. Kluwer, Boston, p. 179-209
  11. Stollenwerk, K.G. (2003) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In Welch, A.H. and Stollenwerk, K.G. (eds.) Arsenic in ground water - geochemistry and occurrence. Kluwer, Boston, p. 67-100
  12. Ahmann, D., Roberts, A.L., JCrumholz, L.R. and Morel, F.M.M. (1994) Microbe grows by reducing arsenic. Nature, v. 371, 750p https://doi.org/10.1038/371750a0
  13. Bhumbla, D.K. and Keefer, R.F. (1994) Arsenic mobilization and bioavailability in soils. In Nriagu, J.O. (ed.) Arsenic in the environment. Wiley, New York, p. 51-82
  14. Fein, J.B., Fowle, D.A., Cahill, J., Kemner, K., Boyanov, M. and Bunker, B. (2002) Nonmetabdic reduction of Cr(VI) by bacterial surfaces under nutrient-absent conditions. Geomicrobiol. J., v. 19, p. 369-382 https://doi.org/10.1080/01490450290098423
  15. Klimmek, S., Stan, H.-J., Wilke, A., Bunke, G. and Buch-holz, R. (2001) Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ. Sci. Technol., v. 35, p. 4283-428 https://doi.org/10.1021/es010063x
  16. Lee, J.-U., Lee, S.-W. and Kim, K.-W. (2002) Bioleaching of arsenic from mine tailing using indigenous microorganisms. In Proceedings of Environmental Biotechnology 2002, New Zealand, p. 355-362
  17. Kolker, A., Haack, S.K., Cannon, W.E, Westjohn, D.B., Kim, M.-J., Nriagu, J. and Woodruff, L.G. (2003) Arsenic in southeastern Michigan. In Welch, A.H. and Stollenwerk, K.G. (eds.) Arsenic in ground water -geochemistry and occurrence. Kluwer, Boston, p. 281-294
  18. Santini, J.M., Sly, L.I., Schnagl, R.D. and Macy, J.M. (2000) A new chemolithoautotrophic arsenite-oxidiz-ing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl. Environ. Microbiol., v. 66, p. 92-97 https://doi.org/10.1128/AEM.66.1.92-97.2000
  19. Watkins, L. and Costerton, J.W. (1984) Growth and bio-cide resistance of bacterial biofilms in industrial systems. Chemical Times and Trends, v. October, p. 35-40
  20. 이지민, 하원경, 전효택, 이종운 (2005) 비소로 오염된 토양 및 퇴적물에서의 미생물학적 비소산화 연구. 한국지구시스템공학회 2005년도 춘계학술발표회 (제84회)논문집, p. 57-62
  21. Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R. and Morel, F.M.M. (1997) Dis-similatory arsenate, and sulfate reduction in Desulfo-tomaculum auripigmentum sp. nov. Arch. Microbiol., v. 168, p. 380-388 https://doi.org/10.1007/s002030050512
  22. Macy, J.M., Nunan, K., Hagen, K.D., Dixon, D.R., Harbour, P.J., Cahill, M. and Sly, L.I. (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int. J. Sys. Bacterid., v. 46, p. 1153-1157 https://doi.org/10.1099/00207713-46-4-1153
  23. Newman, D.K, Ahmann, D.E. and Morel, F.M.M. (1998) A brief review of microbial asenate respiration. Geomicrobiol. J., v. 15, p. 255-268 https://doi.org/10.1080/01490459809378082
  24. Schreiber, M.E., Gotkowitz, M.B., Simo, J.A. and Freiberg, P.G. (2003) Mechanisms of arsenic release to water from naturally occurring sources, eastern Wisconsin. In Welch, A.H. and Stollenwerk, K.G. (eds.) Arsenic in ground water - geochemistry and occurrence. Kluwer, Boston, p. 259-280
  25. Berg, M., Tran, H.C., Nguyen, T.C., Pham, H.V, Scherten-leib, R. and Giger, W (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ. Sci. Technol., v. 35, p. 2621-2626 https://doi.org/10.1021/es010027y
  26. Gulens, J. and Champ, D.R. (1979) Influence of redox environments on the mobility of arsenic in groundwater. In Jenne E.A. (ed). Chemical modelling in aqueous systems. ACS Press, Washington, DC, p. 81-95
  27. Oremland, R.S., Blum, J.S., Culbertson, C.W., Visscher, P.T, Miller, L.G., Dowdle, P. and Strohmaier, F.E. (1994) Isolation, growth and metabolism of an obli-gately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol., v. 60, p. 3011-3019
  28. Gihring, T.M., Druschel, G.K., McCleskey, R.B., Hamers, R.J. and Banfield, J.F. (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermits thermophilics: field and laboratory investigations. Environ. Sci. Technol., v. 35, p. 3857-3862 https://doi.org/10.1021/es010816f
  29. Ahmann, D., Krumholz, L.R., Hemond, H.F., Lovley, D.R. and Morel, F.M.M. (1997) Microbial mobilization of arsenic from sediments of the Aberjona Watershed. Environ. Sci. Technol., v. 31, p. 2923-2930 https://doi.org/10.1021/es970124k
  30. Ayotte, J.D., Montgomery, D.L., Flanagan, S.M. and Robinson, K.W. (2003) Arsenic in groundwater in eastern New England: occurrence, controls, and human health implications. Environ. Sci. Technol., v. 37, p. 2075-2083 https://doi.org/10.1021/es026211g
  31. McLean, J.S., Lee, J.-U. and Beveridge, T.J. (2002) Interactions of bacteria and environmental metals, finegrained mineral development, and bioremediation strategies. In Huang, RM., Bollag, J.-M. and Senesi, N. (eds.) Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem. John Wiley and Sons, England, p. 227-261
  32. Vecchio, A., Finoli, C, Di Simine, D. and Andreoni, V. (1998) Heavy metal biosorption by bacterial cells. Fresenius J. Anal. Chem., v. 361, p. 338-342 https://doi.org/10.1007/s002160050899
  33. Williams, T.M., Rawlins, B.G., Smith, B. and Breward, N. (1998) In-vitro determination of arsenic bioavailability in contaminated soil and mineral beneficiation waste from Ron Phibum, southern Thiland; A basis for improved human risk assessment. Environ. Geochem. Hlth., v. 20, p. 169-178 https://doi.org/10.1023/A:1006545817478
  34. Moore, J.N. and Woessner, W.W. (2003) Arsenic contamination in the water supply of Milltown, Montana. In Welch, A.H. and Stollenwerk, K.G. (eds.) Arsenic in ground water - geochemistry and occurrence. Kluwer, Boston, p. 329-350
  35. Lee, J.-U. and Fein, J.B. (2000) Experimental study of the effects of Bacillus subtilis on gibbsite dissolution rates under near-neutral pH and nutrient-poor conditions. Chem. Geol., v. 166, p. 193-202 https://doi.org/10.1016/S0009-2541(99)00191-6
  36. Fein, J.B., Daughney, C.J., Yee, N. and Davis, T.A. (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim. Cosmochim. Acta, v. 61, p. 3319-3328 https://doi.org/10.1016/S0016-7037(97)00166-X
  37. Park, J.M., Lee, J.S., Chon, H.T. and Lee, J.-U. (2005) Effects of indigenous bacteria on geochemical behavior of As in As-contaminated sediment. In Proceedings of the 4th Asia-Pacific Symposium on Environmental Geochemistry. Australia, p. O.19
  38. Lee, J.-U. and Beveridge, T.J. (2001) Interaction between iron and Pseudomonas aeruginosa biofilms attached to Sepharose surfaces. Chem. Geol, v. 180, p. 67-80 https://doi.org/10.1016/S0009-2541(01)00306-0
  39. 이종운, 전효택 (2000) 원소의 지구화학적 거동에 미치는 박테리아의 영향: 지구미생물학의 최근 연구 동향. 자원환경지질, 33권, p. 353-365
  40. Beveridge, T.J. and Murray, R.G.E. (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacterid., v. 127, p. 876-887
  41. Lee, J.-U., Lee, S.-W, Kim, K.-W. and Yoon, C.-H. (2005) The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. Environ. Geochem. Hlth., v. 27, p. 159-168 https://doi.org/10.1007/s10653-005-0133-4
  42. Salmassi, T.M., Venkateswaren, K., Satomi, M., Nealson, K.H., Newman, D.K. and Hering, J.G. (2002) Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California. Geomicrobiol. J., v. 19, p. 53-66 https://doi.org/10.1080/014904502317246165