DOI QR코드

DOI QR Code

시설하우스 폐양액의 토양 처리에 따른 질소 및 인의 이동

Fate of Nitrogen and Phosphorous in Hydroponic Waste Solution Applied to the Upland Soils

  • 양재의 (강원대학교 자원생물환경학과) ;
  • 박창진 (KT&G 중앙연구원) ;
  • 유경열 (강원대학교 자원생물환경학과) ;
  • 김경희 (강원도 농업기술원) ;
  • 옥용식 (강원대학교 자원생물환경학과)
  • Yang, Jae-E. (Division of Biological Environment, Kangwon National University) ;
  • Park, Chang-Jin (Central Research Institute, KT&G) ;
  • Yoo, Kyung-Yoal (Division of Biological Environment, Kangwon National University) ;
  • Kim, Kyung-Hee (Gangwon Agricultural Research and Extension Services) ;
  • Ok, Yong-Sik (Division of Biological Environment, Kangwon National University)
  • 발행 : 2005.06.30

초록

본 연구에서는 폐양액의 토양 처리에 따른 토양의 이화학적 특성 변화를 조사하고 혼합이온교환수지를 이용하여 토양 깊이에 따른 양분의 이동 및 농도 변화를 평가함으로써 폐양액이 토양에 미칠 수 있는 영향을 평가하고자 하였다. 폐양액을 토양에 처리한 경우 토양 중 $H^+$ 이온과 폐양액의 양이온이 교환되어 토양을 통과한 폐양액의 pH와 EC는 감소하였다. 컬럼 시험 결과 폐양액의 EC, 암모늄테 질소 및 $K^+$는 컬럼 길이가 길어질수록 감소하였고 관주 횟수가 증가할수록 제거율이 감소하였다. 이러한 현상은 폐양액 중의 양분이 토양층을 통과하며 양이온교환용량을 포화시켰기 때문이며 따라서 토양의 양이온교환용량과 염기포화도는 폐양액의 처리 효율과 처리용량을 결정하는 주요인으로 판단되었다. 질산태 질소의 경우 초기 폐양액 농도의 약 2/3 정도가 감소하였고 컬럼 길이보다는 관주 회수에 더 큰 영향을 받았다. 인산의 경우 제거효율이 높았으며 대부분이 고정화 혹은 침전 반응에 의한 것으로 판단되었다. 고추재배 포장에 폐양액을 처리한 경우 질소 및 인은 $NO_3-N>NH_4-N>PO_4-P$ 순으로 토양 용액에 존재하는 것으로 조사되었고 질산태 질소의 경우 45 cm 깊이에서도 농도가 높게 나타나 지하수로의 이동 가능성을 확인할 수 있었다. 따라서 질산태 질소의 경우 폐양액의 토양 처리를 제한할 수 있는 주요한 인자로 작용하는 것으로 사료된다. 인산의 경우 30 cm와 45 cm 모두에서 농도가 낮게 나타나 표층에서 대부분이 제거되는 것으로 확인되어 인산 이온이 지하수로 유입될 가능성은 매우 낮을 것으로 판단되었다.

참고문헌

  1. Seo, B. C. (1999) Future prospects and countermeasures for hydroponics in 21C, J. Hart. Sci. Technol. 17, 796-802
  2. 김목원 (2000) 원예시설 산업의 발전과정과 현황 및 문제점, 한국시설원예연구회 제13회 심포지엄 proceeding, p.43-55
  3. MOE (1999) Water conservation act, Ministry of Environment, Gyeonggi-do, Korea, p.1-150
  4. Van Os, E. A. (1994) Closed growing systems for more efficient and environmental friendly production, Acta Horticulturae 396, p.25-32
  5. Sparks, D. L. (2003) Environmental soil chemistry, 2nd ed., Academic Press, Inc., San Diego, USA, p.1-352
  6. Salomons, W., Forstner, U., and Mader, P. (1995) Heavy metal: problems and solutions, Springer-Verlag, Berlin, Germany, p.1-412
  7. MOE (2000) Korea standard methods for water quality, Ministry of Environment, Gyeonggi-do, Korea
  8. NIAST (1988) Methods of soil chemical analysis, National Institute of Agricultural science and Technology, RDA, Suwon, Korea
  9. Yang, J. E., Skogley, E. O., and Schaff, B. E. (1991) Nutrient flux to mixed-bed ion exchange resin: temperature effects, Soil Sci. Soc. Am. J. 55, 762-767 https://doi.org/10.2136/sssaj1991.03615995005500030021x
  10. Ok, Y. S., Lim, S. K., and Kim, J. G. (2002) Electrochemical properties of soils: principles and applications, Life Sci. Nat. Resour. Res. 10, 69-84
  11. Ok, Y. S., Choi, Y. S., Lee, S. E., Lim, S. K., Chung, N. H., and Kim, J. G. (2001) Effects of soil components and index ion on the surface charge characteristics of some Korean arable soils, Korean J. Soil Sci. Fert. 34(4), 237-244
  12. Yoon, Y., Ok, Y. S., Kim, D. Y., and Kim, J. G. (2004) Agricultural recycling of the by-product concentrate of livestock wastewater treatment plant processed with VSEP RO and bio-ceramic SBR, Water Sci. Technol. 49(5-6), 405-412
  13. Miller, R. W. and Donahue, R. L. (1990) Soils: an introduction to soils and plant growth, Prectice-Hall, USA, p.95-106
  14. Bohn, H. L., McNeal, B. L. and O'connor, G. A. (1979) Soil chemistry, John Wiley and Sons, USA, p.185-192
  15. Helfferich, F. (1962) Ion exchange kinetics: Ill. experimental test of the theory of particle-diffusion controlled ion exchange, J. Phys. Chem. 66, 39-44 https://doi.org/10.1021/j100807a008
  16. Weaver, D. M. and Ritchie, G. S. P. (1994) Phosphorus leaching in soils amended with piggery effluent or lime residues from effluent treatment, Environ. Poll. 84, 227-235 https://doi.org/10.1016/0269-7491(94)90133-3
  17. Park, C. J., Yang, J. E., Kim, K. H., Yoo, K. Y., and Ok, Y. S. (2005) Recycling of hydroponic waste solution for red pepper (Capsicum annum L.) growth, Korean J. Environ. Agric. 24(1), 24-28 https://doi.org/10.5338/KJEA.2005.24.1.024
  18. Yang, J. E., Skogley, E. O., Georgitis, S. J., Schaff, B. E. and Ferguson, A. H. (1991) Phytoavailability soil test: development and verification of theory, Soil Sci. Soc. Am. J. 55, 1358-1365 https://doi.org/10.2136/sssaj1991.03615995005500050027x
  19. Yang, J. E., Park, C. J., Kim, D. K., Ok, Y. S., Ryu, K R, Lee, J. Y., and Zhang, Y. S. (2004) Development of mixed-bed ion exchange resin capsule for water quality monitoring, J. Korean Soc. Appl. Biol. Chem. 47(3), 344-350
  20. Yang, J. E., and Skogley, E. O. (1992) Diffusion kinetics of multinutrient accumulation by mixed-bed ion exchange resin, Soil Sci. Soc. Am. J. 56, 408-414 https://doi.org/10.2136/sssaj1992.03615995005600020011x

피인용 문헌

  1. Effect of Waste Nutrient Solution and Reclaimed Wastewater on Chinese Cabbage Growth and Soil Properties vol.44, pp.3, 2011, https://doi.org/10.7745/KJSSF.2011.44.3.394
  2. Reuse of hydroponic waste solution vol.21, pp.16, 2014, https://doi.org/10.1007/s11356-014-3024-3
  3. Effects of Waste Nutrient Solution on Growth of Chinese Cabbage (Brassica campestris L.) in Korea vol.30, pp.2, 2011, https://doi.org/10.5338/KJEA.2011.30.2.125