DOI QR코드

DOI QR Code

만경강 유역 오염부하량 평가

Assessment of Pollutant Loads for Water Enhancement in the Mankyeong River

  • 이경보 (작물과학원 호남공업연구소) ;
  • 김종천 (전라북도 보건환경연구원) ;
  • 김종구 (작물과학원 호남공업연구소) ;
  • 이덕배 (농업과학기술원) ;
  • 박찬원 (작물과학원 호남공업연구소) ;
  • 김재덕 (작물과학원 호남공업연구소)
  • Lee, Kyeong-Bo (Honam Agricultural Research Institute, NICS RDA) ;
  • Kim, Jong-Cheon (Jeonbuk Institute of Health and Environmental Research) ;
  • Kim, Jong-Gu (Honam Agricultural Research Institute, NICS RDA) ;
  • Lee, Deog-Bae (National Institute of Agricultural Science Technology, RDA) ;
  • Park, Chan-Won (Honam Agricultural Research Institute, NICS RDA) ;
  • Kim, Jae-Duk (Honam Agricultural Research Institute, NICS RDA)
  • 발행 : 2005.06.30

초록

만경강 수질관리 대안을 제시하고자 점오염원과 비점오염원으로부터 발생, 배출, 유달부하량을 평가하였다. 만경강 유역 BOD의 평균 농도는 상류유역에서 1.06 mg $L^{-1}$로 I급수 수질을 나타내었으나, 중류유역에서는 8.62 mg $L^{-1}$, 하류 유역에서는 7.84 mg $L^{-1}$를 나타냈고 가을과 겨울철에 높았다. T-N의 농도는 중류 유역에서 높았으며, T-P의 농도는 상류가 0.12 mg $L^{-1}$, 중류가 1.90 mg $L^{-1}$, 하류가 1.38 mg $L^{-1}$이었다. 만경강 각 유역별 점오염원의 BOD 발생부하량은 익산천, 목천포천, 청하유역이 많았으며, T-N과 T-P의 발생부하량은 익산천, 청하유역이 많았다. 비점오염원의 BOD 발생부하량은 목천포천이 3,931 kg $day^{-1}$로 가장 많았으며, 탑천 2,870 kg $day^{-1}$, 전주천 2,827 kg $day^{-1}$이었다. 만경강의 BOD 배출부하량은 인구에 의한 영향이 컸으며, T-N와 T-P 배출부하량은 축산에 의한 영향이 컸다. 지천별 BOD 유달부하량은 전주천, 목천포천, 고산천, 익산천 순으로 높았으며, T-N 유달부하량은 전주천이 가장 높았고, T-P 유달부하량은 익산천이 가장 높았다. 비강우시 BOD와 T-N 유달율은 하류인 목천포천을 제외하고는 100% 이하였으나 강우시 BOD와 T-N 유달율은 상류인 고산천에서 가장 높았다. 만경강 지천별 목표수질을 4등급으로 설정하였을 경우 익산천과 목천포천은 각각 174 kg $day^{-1}$, 3,695 kg $day^{-1}$을 삭감해야 되는 것으로 조사 되었다.

키워드

Mankyeong River;Water quality;Pollutant loads

참고문헌

  1. Novotny, V. and Olem H. (1994) Water quality prevention, identification and management of diffuse pollution, Van Nostrand Reinhold, New York, NY
  2. Binford, M.W. and Buchenau M.J. (1993) Riparian greenways and water resources, In: Smith, D.S and Hellmund P.C Ecology of greenways, Minneapolis: University of Minnesota Press, pp. 69-104
  3. Jain, C. K., Bhatia, K. K. S. and Seth, S.M. (1998) Assessment of point and non-point sources of pollution using a chemical mass balance approach, Hydrological Sciences, 43(3), 379-390 https://doi.org/10.1080/02626669809492133
  4. Lee K. B., Kim C. H., Kim J. G., Lee D. B., Park C. W. and Na S. Y. (2003) Assessment of water purification plant vegetation for enhancement of natural purification in Mankyeong river. Kor. J. Environ. Agri. 22(2), 153-165 https://doi.org/10.5338/KJEA.2003.22.2.153
  5. Budd, W.W., Cohen, P.L., Saunders, P.R. and Steiner, F.R. (1987) Stream corridor management in the Pacific northwest: determination of stream corridor width, Environmental Management 11:587-597 https://doi.org/10.1007/BF01880157
  6. Haycock, N.E. and Muscutt, A.D. (1995) Landscape management strategies for the control of diffuse pollution, Landscape and Urban Planning 31:313-321 https://doi.org/10.1016/0169-2046(94)01056-E
  7. Ministry of Environ. (2000) The standard method of water analysis
  8. Ministry of Environ. (1999) Guideline of total pollutant to stream management
  9. FAO. (1977) Water quality for agriculture. FAO/UN 29 Rev. 1:174
  10. Skaggs, R.S. and Khaleel R. (1982) Infiltration, In: Haan, C.T., Johnson, H.P. and Brakensek D.L. Hydrologic modeling of small watersheds, St. Joseph, MI: American Society of Agricultural Engineers, pp.119-124, 142-143
  11. Vanderhelm, D.H., Dickey, E.C, Jackobs, J.A., Elmore, R.W. and Spahr S.L. (1979) Livestock feedlot runoff control by vegetative filters, EPA-600/ 2-79143, Washington: DC: U.S. Environmental Protection Agency, pp.143
  12. Lee K. B., Kim C. H., Lee D. B., Kim J. G., Park C. W. and Na S. Y. (2003) Species diversity of riparian vegetation by soil chemical properties and water quality in the upper stream of in Mankyeong river. Kor. J. Environ. Agri. 22(2), 100-110 https://doi.org/10.5338/KJEA.2003.22.2.100

피인용 문헌

  1. Prediction of Water Quality at the Inlet of Saemangeum Bay by using Non-point Sources Runoff Simulation in the Mankyeong River Watershed vol.27, pp.6, 2013, https://doi.org/10.11001/jksww.2013.27.6.761