DOI QR코드

DOI QR Code

Retrieving English Words with a Spoken Work Transliteration

입말 표기를 이용한 영어 단어 검색

  • 김지승 (숭실대학교 정보과학대학 컴퓨터학과) ;
  • 김광현 (숭실대학교 정보과학대학 컴퓨터학과) ;
  • 이준호 (숭실대학교 정보과학대학 컴퓨터학과)
  • Published : 2005.09.01

Abstract

Users of searching Internet English dictionary sometimes do not know the correct spelling of the word in mind, but remember only its pronunciation. In order to help these users, we propose a method to retrieve English words effectively with a spoken word transliteration that is a Korean transliteration of English word pronunciation. We develop KONIX codes and transform a spoken word transliteration and English words into them. We then calculate the phonetic similarity between KONIX codes using edit distance and 2-gram methods. Experimental results show that the proposed method is very effective for retrieving English words with a spoken word transliteration.

Keywords

Information Retrieval;English Dictionary Search;Phonetic Similarity

References

  1. Gadd, T.. 1988. ''Fisching fore werds'. Pho- netic retrieval of written text in infor- mation retrieval systems.' Program, 22(3): 222-237 https://doi.org/10.1108/eb046999
  2. Pfeifer, U., Poersch, T., and Fuhr, N. 1996. 'Retrieval effectiveness of proper name search methods.' Information Processing & Management, 32(6): 667-679 https://doi.org/10.1016/S0306-4573(96)00042-8
  3. Ukkonen, E. 1992. 'Approximate string- matching with q-grams and maximal matches.' Theoretical Computer Sci- ence, 191-211
  4. Voorhees, Ellen M. and Tice, D. 2000. 'The TREC-8 Question Answering Track Evaluation.' In Text Retrieval Con- ference TREC-8
  5. Gadd, T. 1990. 'PHONIX: The algorithm.' Program, 22(4): 363-366
  6. Lee, J. 1995. 'Combining Multiple Evidence from Different Properties of Weighting Schemes,' ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, USA, 180-188
  7. Fox, E. and Shaw, J. 1993. 'Combination of Multiple searches.' In Harman, D., editor, Proc TREC, pages 35-44, Washington. National Institute of Standards and Technology Special Publication, 500-215
  8. Damerau, F. 1964. 'A technique for com- puter detection and correction of spel- ling errors.' Communications of the ACM, 7: 171-176
  9. Pollock, J., and Zamora, A.. 1984. 'Automatic spelling correction in scientific and scholarly text.' Communications of the ACM, 27(4): 358-368 https://doi.org/10.1145/358027.358048
  10. Zobel, J., and Dart, P. 1996. 'Phonetic string matching: Lessons from information retrieval.' In Proceedings of ACM SIGIR Conference on Information Retrieval, Zurich, Switzerland, 166-172
  11. Lee, J., Cho, h. and Park, H. 1999. 'N-Gram- Based Indexing for Korean Text Retrieval,' Information Processing & Management, 35(4): 427-441 https://doi.org/10.1016/S0306-4573(98)00050-8
  12. Zamora, E., Pollock, J., and Zamora, A. 1981. 'The use of trigram analysis for spelling error detection.' Information Processing and Management, 17(6): 305-316 https://doi.org/10.1016/0306-4573(81)90044-3
  13. Zobel, J., and Dart, P. 1995. 'Finding Ap- proximate Matche in Large Lexicons.' Software-Practice and Experience, 25(3): 331-345 https://doi.org/10.1002/spe.4380250307
  14. Hall, P. and Dowling, G. 1980. 'Approximate string matching.' Computing Surveys, 12(4): 381-402 https://doi.org/10.1145/356827.356830
  15. 강병주, 최기선. 1990. 외국어 음차 표기의 음성적 유사도 비교 알고리즘. '정보과학회 논문지(B)', 26(10): 1237-1246

Cited by

  1. Transliteration Correction Method using Korean Alphabet Viable Prefix vol.18B, pp.2, 2011, https://doi.org/10.3745/KIPSTB.2011.18B.2.087