DOI QR코드

DOI QR Code

GENERALIZED LIOUVILLE PROPERTY FOR SCHRÖDINGER OPERATOR ON GRAPHS

  • Kim, Seok-Woo (Department of Mathematics Education Konkuk University) ;
  • Lee, Yong-Hah (Department of Mathematics Education Ewha Womans University)
  • Published : 2005.07.01

Abstract

We prove that the dimension of the space of positive (bounded, respectively) solutions for the Schrodinger operator whose potential q is nonnegative on a graph with q-regular ends is equal to the number of ends (q-nonparabolic ends, respectively).

References

  1. I. Holopainen and P. M. Soardi, A strong Liouville theorem for p-harmonic functions on graphs, Ann. Acad. Sci. Fenn. Math. 22 (1997), 205-226
  2. M. Kanai, Rough isometries and the parabolicity of riemannian manifolds, J. Math. Soc. Japan 38 (1986), 227-238 https://doi.org/10.2969/jmsj/03820227
  3. S. W. Kim and Y. H. Lee, Generalized Liouville property for Schriidinqer operator on Riemannian manifolds, Math. Z. 238 (2001), 355-387 https://doi.org/10.1007/s002090100257
  4. Y. H. Lee, Rough isometry and Dirichlet finite harmonic functions Riemannian manifolds, Manuscripta Math. 99 (1999), 311-328 https://doi.org/10.1007/s002290050175
  5. Y. H. Lee, Rough isometry and energy finite solutions of the Schrodinqer operator on graphs, Discrete Math. 263 (2003), 167-177 https://doi.org/10.1016/S0012-365X(02)00576-9
  6. P. M. Soardi, Rough isometries and energy finite harmonic functions on graphs, Proc. Amer. Math. Soc. 119 (1993), 1239-1248 https://doi.org/10.2307/2159987