Communications of the Korean Mathematical Society (대한수학회논문집)
- Volume 20 Issue 3
- /
- Pages.521-529
- /
- 2005
- /
- 1225-1763(pISSN)
- /
- 2234-3024(eISSN)
DOI QR Code
GENERALIZED LIOUVILLE PROPERTY FOR SCHRÖDINGER OPERATOR ON GRAPHS
- Kim, Seok-Woo (Department of Mathematics Education Konkuk University) ;
- Lee, Yong-Hah (Department of Mathematics Education Ewha Womans University)
- Published : 2005.07.01
Abstract
We prove that the dimension of the space of positive (bounded, respectively) solutions for the Schrodinger operator whose potential q is nonnegative on a graph with q-regular ends is equal to the number of ends (q-nonparabolic ends, respectively).
File
References
- I. Holopainen and P. M. Soardi, A strong Liouville theorem for p-harmonic functions on graphs, Ann. Acad. Sci. Fenn. Math. 22 (1997), 205-226
- M. Kanai, Rough isometries and the parabolicity of riemannian manifolds, J. Math. Soc. Japan 38 (1986), 227-238 https://doi.org/10.2969/jmsj/03820227
- S. W. Kim and Y. H. Lee, Generalized Liouville property for Schriidinqer operator on Riemannian manifolds, Math. Z. 238 (2001), 355-387 https://doi.org/10.1007/s002090100257
- Y. H. Lee, Rough isometry and Dirichlet finite harmonic functions Riemannian manifolds, Manuscripta Math. 99 (1999), 311-328 https://doi.org/10.1007/s002290050175
- Y. H. Lee, Rough isometry and energy finite solutions of the Schrodinqer operator on graphs, Discrete Math. 263 (2003), 167-177 https://doi.org/10.1016/S0012-365X(02)00576-9
- P. M. Soardi, Rough isometries and energy finite harmonic functions on graphs, Proc. Amer. Math. Soc. 119 (1993), 1239-1248 https://doi.org/10.2307/2159987