Communications of the Korean Mathematical Society (대한수학회논문집)
- Volume 20 Issue 3
- /
- Pages.457-466
- /
- 2005
- /
- 1225-1763(pISSN)
- /
- 2234-3024(eISSN)
DOI QR Code
RINGS WHOSE PRIME RADICALS ARE COMPLETELY PRIME
- KANG, KWANG-HO (Department of Mathematics Busan Science Academy) ;
- KIM, BYUNG-OK (Department of Mathematics Busan Science Academy) ;
- NAM, SANG-JIG (Department of Mathematics Busan National University High School) ;
- SOHN, SU-HO (Department of Mathematics Busan Gukje High School)
- Published : 2005.07.01
Abstract
We study in this note rings whose prime radicals are completely prime. We obtain equivalent conditions to the complete 2-primal-ness and observe properties of completely 2-primal rings, finding examples and counterexamples to the situations that occur naturally in the process.
File
References
-
G. Azumaya, Strongly
$\pi$ -reqular rings, J. Fac. Sci. Hokkaido Univ. 13 (1954), 34-39 - R. Baer, Radical ideals, Amer. J. Math. 65 (1943), 537-568 https://doi.org/10.2307/2371865
- G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-LondonHong Kong, 1993, 102-129
- F. Dischinger, Sur les anneauxfortement ti-requliers, C. R. Acad. Sci. Paris, Ser. A 283 (1976), 571-573
- J. W. Fisher and R. L. Snider, On the von Neumann regularity of rings with regular prime factor rings, Pacific J. Math. 54 (1974), 135-144 https://doi.org/10.2140/pjm.1974.54.135
- I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, ChicagoLondon, 1965
- Y. Hirano, Some studies on strongly n-reqular rings, Math. J. Okayama Univ. 20 (1978), 141-149
- C. Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra 28 (2000), no. 10, 4867-4878 https://doi.org/10.1080/00927870008827127
- C. Huh, E. J. Kim, H. K. Kim, and Y. Lee, Nilradicals of power series rings and nil power series rings, submitted
- C. Huh, H. K. Kim, D. S. Lee, and Y. Lee, Prime radicals of formal power series rings, Bull. Korean Math. Soc. 38 (2001), no. 4, 623-633
- A. A. Klein, Rings of bounded index, Comm. Algebra 12 (1984), no. 1, 9-21 https://doi.org/10.1080/00927878408822986
- Y. Lee, C. Huh, and H. K. Kim, Questions on 2-primal rings, Comm. Algebra 26 (1998), no. 2, 595-600 https://doi.org/10.1080/00927879808826150
- L. H. Rowen, Ring Theory, Academic Press, Inc., San Diego, 1991
- G. Shin, Prime ideals and sheaf representation of a pseudo symmetric rings, Trans. Amer. Math. Soc. 184 (1973), 43-60 https://doi.org/10.2307/1996398