Hydrogeochemical Characterization of Groundwater in Jeju Island using Principal Component Analysis and Geostatistics

주성분분석과 지구통계법을 이용한 제주도 지하수의 수리지화학 특성 연구

  • Published : 2005.08.01

Abstract

The purpose of the study is to analyze the hydrogeochemical characteristics by multivariate statistical method, to interpret the hydrogeochemical processes for the new variables calculated from principal components analysis (PCA), and to infer the groundwater flow and circulation mechanism by applying the geostatistical methods for each element and principal component. Chloride and nitrate are the most influencing components for groundwater quality, and the contents of $NO_3$ increased by the input of agricultural activities show the largest variation. The results of PCA, a multivariate statistical method, show that the first three principal components explain $73.9\%$ of the total variance. PC1 indicates the increase of dissolved ions, PC2 is related with the dissolution of carbonate minerals and nitrate contamination, and PC3 shows the effect of cation exchange process and silicate mineral dissolution. From the results of experimental semivariogram, the components of groundwater are divided into two groups: one group includes electrical conductivity (EC), Cl, Na, and $NO_3$, and the other includes $HCO_3,\;SiO_2,$ Ca, and Sr. The results for spatial distribution of groundwater components showed that EC, Cl, and Na increased with approaching the coastal line and nitrate has close relationship with the presence of agricultural land. These components are also correlated with the topographic features reflecting the groundwater recharge effect. The kriging analysis by using principal components shows that PC 1 has the different spatial distribution of Cl, Na, and EC, possibly due to the influence of pH, Ca, Sr, and $HCO_3$ for PC1. It was considered that the linear anomaly zone of PC2 in western area was caused by the dissolution of carbonate mineral. Consequently, the application of multivariate and geostatistical methods for groundwater in the study area is very useful for determining the quantitative analysis of water quality data and the characteristics of spatial distribution.

Keywords

multivariate statistical method;geostatistical methods;hydrogeocheinical characteristics;semivariogram;groundwater recharge

References

  1. 고기원, 박윤석, 박원배, 문덕철 (2003) 제주도 동부지역의 수문지질에 관한 연구(II). 한국지하수토양환경학회 춘계학술대회 논문집, p. 67-72
  2. 부성안, 정교철 (2000) 제주도 동부권역 담지하수 대수층에서의 염수침입. 지질공학, v.10, p. 115-13
  3. 제주도 (2000) 제주도 지하수보전 . 관리계획수립 조사. 588p
  4. Koh, D.-C. (2005) Characterization of hydrogeochemistry and flow dynamics of ground water using environmental tracers in Jeju volcanic island. Ph.D. Thesis, Seoul National University
  5. Sanchez-Martos, E, Pulido-Bosch, A., Molina-Sanchez, L., and Vallejos-Izquierdo, A. (2002) Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). Sci. Total Env., v. 297, p. 43-58 https://doi.org/10.1016/S0048-9697(01)01011-7
  6. Stezenbach, K.J., Farnham, I.M., Hodge, VE, and Johannesson, K.H. (1999) Using multivariate statistical analysis of groundwater major cation and trace element concentration to evaluate groundwater flow in a regional aquifer. Hydrol. Process., v. 13, p. 2655-2673 https://doi.org/10.1002/(SICI)1099-1085(19991215)13:17<2655::AID-HYP840>3.0.CO;2-4
  7. 송영철, 고용구, 유장걸 (1999) ${\delta}^{15}N$을 이용한 제주도 지하수 중의 질산염 오염원 조사. 대한지하수환경학회지, v.6, p. 107-110
  8. Pannatier, Y. (1996) VARIOWIN: Software for spatial data analysis in 2D. Springer-Verlag, New York, 91p
  9. Kitanidis, P.K. (1997) Introduction to geostatistics: Applications to hydrogeology. Cambridge University Press, New York
  10. Stumm, W and Morgan, J.J. (1996) Aquatic chemistry. Wiley, 3rd ed., New York
  11. 윤정수, 박상운 (1998) 제주도 용천수의 수리화학적 특성. 대한지하수환경학회지, v. 5, p. 66-79
  12. Davis, J.C. (1986) Statistical and data analysis in geology. Wiley, 2nd ed., New York
  13. Deutsch, C.V and Journel, A.G. (1998) GSLIB: Geo-statistical software library and user's guide. Oxford University Press, 2nd ed., New York
  14. Journel, A.G. and Huijbregts, Ch J. (1978) Mining geostatistics. Academic Press, London
  15. Laaksoharju, M., Tullborg, E.-L., Wikberg, E, Wallin, B., and Smellie, J. (1999) Hydrogeochemical conditions and evolution at the Aspo HRL, Sweden. Appl. Geochem., v. 14, p. 835-859 https://doi.org/10.1016/S0883-2927(99)00023-2
  16. Pitkanen, P, Lofman, J., Koskinen, L., Leino-Forsman, H., and Snellman, M. (1999) Application of mass-balance and flow simulation calculations to interpretation of mixing at Aspo, Sweden. Appl. Geochem., v. 14, p. 893-905 https://doi.org/10.1016/S0883-2927(99)00025-6
  17. 우남칠, 김형돈, 이광식, 박원배, 고기원, 문영석 (2001) 지하수 수질관측에 의한 제주도 대정수역의 지하수계 및 오염특성 분석. 자원환경지질학회지, v. 34, p. 485-498
  18. Pebesma, E.J. and de Kwaadsteniet, J.W (1997) Mapping groundwater quality in the Netherlands. J. Hydrol., v. 200, p. 364-386 https://doi.org/10.1016/S0022-1694(97)00027-9
  19. Koh, D.-C, Chang, H.W., Lee, K.-S., Ko, K.S., Kim, Y, and Park, W.B. (2005) Hydrogeochemistry and environmental isotopes of groundwater in Jeju volcanic island, Korea: Implications for nitrate contamination. Hydrol. Process., in press
  20. Reghunath, R., Sreedhara Murthy, T. R., and Raghavan, B. R. (2002) The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Res., v. 36, p. 2437-2442 https://doi.org/10.1016/S0043-1354(01)00490-0
  21. Ceron, J.C., Jimenez-Espionosa, R., and Pulido-Bosch, A. (2000) Numerical analysis of hydrogeochemical data: a case study(Alto Guadalentin, southeast Spain). Appl. Geochem., v. 15, p. 1053-1067 https://doi.org/10.1016/S0883-2927(99)00105-5
  22. 고기원, 윤선 (1997) 제주도 서귀포층의 지하분포상태. 대한지하수환경학회 . 연세대학교 지하수토양환경연구소 '지하수의 환경친화적 . 지속가능한 개발 정책'에 관한 추계학술심포지움
  23. 오윤근, 현익현 (1997) ${\delta}^{15}N$ 값을 이용한 제주도 지하수중의 질산성질소 오염원추정에 관한 연구. 대한지하수환경학회지, v. 4, p. 1-4
  24. 이광식, 고동찬, 이대하, 박원배 (2002) 제주도 강수의 동위원소 조성의 시공간적 분포: 지하수 함양에의 응용. 지질학회지, v. 38, p. 151-161
  25. Johannesson, K.H., Stezenbach, K.J., Kreamer, D.K., and Hodge, VE (1996) Multivariate statistical analysis of arsenic and selenium concentrations in groundwaters from south-central Nevada and Death Valley, California. J. Hydrol., v. 178, p. 181-204 https://doi.org/10.1016/0022-1694(95)02804-8
  26. Wackernagel, H. (1995) Multivariate geostatistics: An introduction with applications. Springer, 3rd ed., Heidelberg