DOI QR코드

DOI QR Code

Heterocyclic Nonlinear Optical Chromophores Composed of Phenothiazine or Carbazole Donor and 2-Cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran Acceptor

  • Cho, Min-Ju (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Kim, Ja-Youn (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Kim, Jae-Hong (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Lee, Seung-Hwan (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Dalton, Larry R. (Department of Chemistry, University of Washington) ;
  • Choi, Dong-Hoon (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University)
  • Published : 2005.01.20

Abstract

We prepared the new nonlinear optical chromophores that show fairly high microscopic nonlinearity through intramolecular charge transfer. Phenothiazine and carbazole units played an important role to contribute high electron donability and connect the resonance pathway via conjugative effect in the cyclized ring beside the aromatic ring. Theoretical calculation, electrochemical analysis, and absorption spectroscopic study gave us useful information about the energy states and microscopic nonlinearities of two serial chromophores. We compared the microscopic nonlinearities of four chromophores with the conjugation length and electron donability in the push-pull type NLO chromophores. The effect of gradient donability and lengthening the conjugation were investigated on the electronic state and microscopic nonlinearity.

Keywords

Phenothiazine;Carbazole;Nonlinear optical chromophore;Gradient donor moiety

References

  1. Dalton, L. R.; Harper, A. W.; Wu, B.; Ghosen, R.; Laquin-danum, J.; Liang, Z.; Hubble, A.; Xu, C. Adv. Mater. 1995, 7, 519 https://doi.org/10.1002/adma.19950070603
  2. Dalton, L. R.; Harper, A.; Ren, A.; Wang, F.; Todorova, G.; Chen, J.; Zhang, C.; Lee. M. Ind. Eng. Chem. Res. 1999, 38, 8 https://doi.org/10.1021/ie9705970
  3. Cho, B. R.; Kim, Y. H.; Son, K. W.; Khalil, C.; Kim, Y. H.; Jeon, S.-J. Bull. Korean Chem. Soc. 2002, 23(9), 1253 https://doi.org/10.5012/bkcs.2002.23.9.1253
  4. Kim, M. H.; Jin, J.-I.; Lee, C. J.; Kim, N.; Park, K. H. Bull. Korean Chem. Soc. 2002, 23(7), 964 https://doi.org/10.5012/bkcs.2002.23.7.964
  5. Lee, M.; Katz, H. E.; Erben, C.; Gill, D. M.; Gopalan, P.; Heber, J. D.; McGee, D. J. Science 2002, 298, 1401 https://doi.org/10.1126/science.1077446
  6. Shi, Y.; Zhang, C.; Zhang, H.; Betchel, J. H.; Dalton, J. R.; Robinson, B. H.; Steier, W. H. Science 2000, 288, 119 https://doi.org/10.1126/science.288.5463.119
  7. Samyn, C.; Verbiest, T.; Persoons, A. Macromol. Rapid Commun. 2000, 21, 1 https://doi.org/10.1002/(SICI)1521-3927(20000101)21:1<1::AID-MARC1>3.0.CO;2-X
  8. Kramer, C. S.; Zeitler, K.; Muller, T. J. J. Org. Lett. 2000, 2(20), 3723 https://doi.org/10.1021/ol0066328
  9. Dalton, L. R. Opt. Eng. 2000, 39, 589 https://doi.org/10.1117/1.602403
  10. He, M. Q.; Leslie, T. M.; Sinicropi, J. A. Chem. Mater. 2002, 14, 4662 https://doi.org/10.1021/cm020405d
  11. Wu, X.; Wu, J.; Jen, A. K.-Y. J. Am. Chem. Soc. 1999, 121, 472 https://doi.org/10.1021/ja983537+
  12. Wang, F.; Ren, A. S.; He, M.; Harper, A. W.; Dalton, L. R.; Zhang, H.; Garner, S. M.; Chen, A.; Steier, W. H. Polym. Prepr. 1998, 39(2), 1065
  13. Robinson, B. H.; Dalton, L. R.; Harper, A. W.; Ren, A.; Wang, F.; Zhang, C.; Todorova, G.; Lee. M.; Aniszfeld, R.; Garner, S.; Chen, A.; Steier, W. H.; Houbrecht, S.; Persoons, A.; Ledoux, I.; Zyss, J.; Jen, A. K-Y. Chem. Phys. 1999, 245, 35 https://doi.org/10.1016/S0301-0104(99)00079-8
  14. Melikian, G.; Rouessac, F. P.; Alexandre, C. Synth. Comm. 1995, 25, 3045 https://doi.org/10.1080/00397919508011437
  15. Dalton, L. R.; Harper, A. W.; Ghosen, R.; Steier, W. H.; Ziari, M.; Fetterman, H.; Shi, Y.; Mustacich, R. V.; Jen, A. K.-Y.; Shea, K. J. Chem. Mater. 1995, 7, 1060 https://doi.org/10.1021/cm00054a006
  16. He, M. Q.; Leslie, T. M.; Sinicropi, J. A.; Garner, S. M.; Reed, L. D. Chem. Mater. 2002, 14, 4669 https://doi.org/10.1021/cm0204066

Cited by

  1. Syntheses and photophysical properties of new carbazole-based conjugated multi-branched molecules vol.15, pp.7, 2007, https://doi.org/10.1007/BF03218937
  2. Synthesis and characterization of Y-type polymers for second-order nonlinear optical applications vol.51, pp.4, 2012, https://doi.org/10.1002/pola.26439
  3. Phenothiazinyl Rhodanylidene Merocyanines for Dye-Sensitized Solar Cells vol.77, pp.8, 2012, https://doi.org/10.1021/jo202608w
  4. Preparation and properties of poly[9-hexadecyl-3-phenyl-6-(4-vinylphenyl)-9H-carbazole] vol.84, pp.7, 2014, https://doi.org/10.1134/S1070363214070111
  5. In-Depth Investigation of the Optical Effects in Rationally Designed Phenoxazine-Based Polyazomethines with Activated Quenched Fluorescence vol.121, pp.11, 2017, https://doi.org/10.1021/acs.jpcc.7b00566
  6. Synthesis of isomeric (E)-[4-(dimethylamino)phenyl]-vinylquinoxalines – precursors for a new class of nonlinear optical chromophores vol.53, pp.5, 2017, https://doi.org/10.1007/s10593-017-2084-y
  7. Synthesis, Electronic, and Electro-Optical Properties of Emissive Solvatochromic Phenothiazinyl Merocyanine Dyes vol.17, pp.36, 2011, https://doi.org/10.1002/chem.201100592
  8. Novel quinoxalinone-based push–pull chromophores with highly sensitive emission and absorption properties towards small structural modifications vol.20, pp.33, 2018, https://doi.org/10.1039/C8CP03780A
  9. Heterocyclic Nonlinear Optical Chromophores Composed of Phenothiazine or Carbazole Donor and 2-Cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran Acceptor vol.36, pp.23, 2005, https://doi.org/10.1002/chin.200523189
  10. Electroluminescence of Phenothiazine-Labeled Dendrimer Encapsulated 2-{2-[2-(4-Dimethylamino-phenyl)-vinyl]-6-methyl-pyran-4-ylidene}-Malononitrile Derivative: Effect of the Density of Phenothiazine Dendron vol.245-246, pp.1, 2006, https://doi.org/10.1002/masy.200651360
  11. Development in Synthesis, Electrochemistry, LB Moieties of Phenothiazine Based Units vol.19, pp.13, 2007, https://doi.org/10.1002/elan.200703866
  12. Synthesis and Electronic Properties of Monodisperse Oligophenothiazines vol.14, pp.8, 2008, https://doi.org/10.1002/chem.200701341
  13. Azure A chloride: computational and spectroscopic study vol.40, pp.2, 2009, https://doi.org/10.1002/jrs.2102
  14. Modular Synthesis and Electronic and Hole-Transport Properties of Monodisperse Oligophenothiazines vol.287, pp.1, 2010, https://doi.org/10.1002/masy.201050101