Prediction of Solvent Effects on Rate Constant of [2+2] Cycloaddition Reaction of Diethyl Azodicarboxylate with Ethyl Vinyl Ether Using Artificial Neural Networks

  • Habibi-Yangjeh, Aziz (Department of Chemistry, Faculty of Science, University of Mohaghegh Ardebili) ;
  • Nooshyar, Mahdi (Department of Chemistry, Faculty of Science, University of Mohaghegh Ardebili)
  • Published : 2005.01.20


Artificial neural networks (ANNs), for a first time, were successfully developed for the modeling and prediction of solvent effects on rate constant of [2+2] cycloaddition reaction of diethyl azodicarboxylate with ethyl vinyl ether in various solvents with diverse chemical structures using quantitative structure-activity relationship. The most positive charge of hydrogen atom (q$^+$), dipole moment ($\mu$), the Hildebrand solubility parameter (${\delta}_H^2$) and total charges in molecule (q$_t$) are inputs and output of ANN is log k$_2$ . For evaluation of the predictive power of the generated ANN, the optimized network with 68 various solvents as training set was used to predict log k$_2$ of the reaction in 16 solvents in the prediction set. The results obtained using ANN was compared with the experimental values as well as with those obtained using multi-parameter linear regression (MLR) model and showed superiority of the ANN model over the regression model. Mean square error (MSE) of 0.0806 for the prediction set by MLR model should be compared with the value of 0.0275 for ANN model. These improvements are due to the fact that the reaction rate constant shows non-linear correlations with the descriptors.


  1. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; VCH: 2003
  2. Cativiela, C.; Garcia, J. I.; Gil, J.; Martinez, R. M.; Mayoral, J. A.; Salvatella, L.; Urieta, J. S.; Mainer, A. M.; Abraham, M. H. J. Chem. Soc. Perkin Trans. 2 1997, 653
  3. Marcus, Y. J. Chem. Soc. Perkin Trans. 2 1994, 1015
  4. Gholami, M. R.; Habibi-Yangjeh, A. Int. J. Chem. Kinet. 2000, 32, 431<431::AID-KIN5>3.0.CO;2-J
  5. Gholami, M. R.; Habibi-Yangjeh, A. J. Phys. Org. Chem. 2000, 13, 468<468::AID-POC258>3.0.CO;2-E
  6. Gholami, M. R.; Habibi-Yangjeh, A. Int. J. Chem. Kinet. 2001, 33, 118<118::AID-KIN1003>3.0.CO;2-U
  7. Habibi-Yangjeh, A.; Gholami, M. R.; Mostaghim, R. J. Phys. Org. Chem. 2001, 14, 884
  8. Marcus, Y. The Properties of Solvents; John Wiley and Sons: 1999
  9. Karelson, M.; Lobanov, V. S. Chem. Rev. 1996, 96, 1027
  10. Kamlet, M. J.; Abboud, J. L.; Taft, R. W. J. Am. Chem. Soc. 1977, 99, 6027
  11. Kamlet, M. J.; Taft, R. W. Prog. Org. Chem. 1983, 48, 2877
  12. Taft, R. W.; Abraham, M. H.; Famini, G. R.; Doherty, R. M.; Abboud, J. L.; Kamlet, M. J. J. Pharm. Sci. 1985, 74, 807
  13. Kamlet, M. J.; Taft, R. W.; Famini, G. R.; Doherty, R. M. Acta Chem. Scand. 1987, 41, 589
  14. Lowrey, A. H.; Famini, G. R.; Wilson, L. Y. J. Chem. Soc. Perkin Trans. 2 1997, 1381
  15. Cronce, D. T.; Famini, G. R.; Soto, J. A. D.; Wilson, L. Y. J. Chem. Soc. Perkin Trans. 2 1998, 1293
  16. Engberts, J. B. F. N.; Famini, G. R.; Perjessy, A.; Wilson, L. Y. J. Phys. Org. Chem. 1998, 11, 261<261::AID-POC997>3.0.CO;2-0
  17. Famini, G. R.; Wilson, L. Y. J. Phys. Org. Chem. 1999, 12, 645<645::AID-POC165>3.0.CO;2-S
  18. Famini, G. R.; Benyamin, D.; Kim, C.; Veerawat, R.; Wilson, L. Y. Collect. Czech. Chem. Commun. 1999, 64, 1727
  19. Habibi-Yangjeh, A. Indian J. Chem. 2004, 43B, 1504
  20. Turner, J. V.; Maddalena, D. J.; Cutler, D. J. Int. J. Pharm. 2004, 270, 209
  21. Bose, N. K.; Liang, P. Neural Network Fundamentals; McGraw- Hill: 1996
  22. Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design; Wiley-VCH: Weinhein, 1999
  23. Anker, S. L.; Jurs, P. C. Anal. Chem. 1992, 64, 1157
  24. Xing, W. L.; He, X. W. Anal. Chim. Acta 1997, 349, 283
  25. Bunz, A. P.; Braun, B.; Janowsky, R. Fluid Phase Equilib. 1999, 158, 367
  26. Homer, J.; Generalis, S. C.; Robson, J. H. Phys. Chem. Chem. Phys. 1999, 1, 4075
  27. Goll, E. S.; Jurs, P. C. J. Chem. Inf. Comp. Sci. 1999, 39, 974
  28. Vendrame, R.; Braga, R. S.; Takahata, Y.; Galvao, D. S. J. Chem. Inf. Comput. Sci. 1999, 39, 1094
  29. Gaspelin, M.; Tusar, L.; Smid-Korbar, J.; Zupan, J.; Kristl, J. Int. J. Pharm. 2000, 196, 37
  30. Wegner, J. K.; Zell, A. J. Chem. Inf. Comput. Sci. 2003, 43, 1077
  31. Kuzmanovski, I.; Aleksovska, S. Chemometr. Intell. Lab. Syst. 2003, 67, 167
  32. Sebastiao, R. C. O.; Braga, J. P.; Yoshida, M. I. Thermochimica Acta 2004, 412, 107
  33. Jalali-Heravi, M.; Masoum, S.; Shahbazikhah, P. J. Magn. Reson. 2004, 171, 176
  34. Urata, S.; Takada, A.; Uchimaru, T.; Chandra, A. K.; Sekiya, A. J. Fluorine Chem. 2002, 116, 163
  35. Valkova, I.; Vracko, M.; Basak, S. C. Anal. Chim. Acta 2004, 509, 179
  36. Habibi-Yangjeh, A. Indian J. Chem. 2003, 42B, 1478
  37. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G. ; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98 (Revision A.1); Gaussian, Inc.: Pittsburgh, PA, 1998
  38. Hagan, M. T.; Menhaj, M. IEEE Trans. Neural Networks 1994, 5, 989
  39. Matlab 6.5. Mathworks, 1984-2002
  40. Demuth, H.; Beale, M. Neural Network Toolbox; Mathworks: Natick, MA, 2000

Cited by

  1. A comprehensive study of the solvent effects on the cycloaddition reaction of diethyl azodicarboxylate and ethyl vinyl ether: Efficient implementation of QM and TD-DFT study vol.115, pp.6, 2014,
  2. Prediction of dibenzothiophene conversion in the ultrasound assisted oxidative desulfurization process vol.34, pp.21, 2016,
  3. Prediction of basicity constants of various pyridines in aqueous solution using a principal component-genetic algorithm-artificial neural network vol.139, pp.12, 2008,
  4. Application of PC-ANN to Acidity Constant Prediction of Various Phenols and Benzoic Acids in Water vol.26, pp.5, 2008,
  5. Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water vol.140, pp.1, 2009,
  6. QSAR study of the 5-HT1A receptor affinities of arylpiperazines using a genetic algorithm–artificial neural network model vol.140, pp.5, 2009,
  7. Application of a genetic algorithm and an artificial neural network for global prediction of the toxicity of phenols to Tetrahymena pyriformis vol.140, pp.11, 2009,
  8. Solvent effects on kinetics of an aromatic nucleophilic substitution reaction in mixtures of an ionic liquid with molecular solvents and prediction using artificial neural networks vol.41, pp.3, 2009,