Biomolecular Strategies for Preparation of High Quality Surimi-Based Products

  • Nakamura Soichiro ;
  • Ogawa Masahiro
  • Published : 2005.06.01


There exist two interesting phenomena in making seafood products from surimi. When salted surimi is kept at a constant low temperature $(4\~40^{\circ}C)$, its rheological properties change from sol to gel, which is called 'setting'. Seafood processors can exploit changes that occur during setting in preparation of surimibased products, because heating at high temperatures, after the pre-heating during the setting process, enhances the gel-strength of salted surimi. Contrarily, when salted surimi or low-temperature set gel is heated at moderate temperatures $(50\~70^{\circ}C)$, a deterioration of gel is observed. The phenomenon is termed 'modori'. In the modori temperature range, heat-stable cysteine proteinases such as cathepsin B, H, Land L-Iike hydrolyze the myosins responsible for gel-formation, resulting in gel weakening modori. This article reviews molecular events occurring during gel setting that improve the quality of surimi-based products, and inhibition of modori by applying proteinase inhibitors. Application of recombinant protein technology to surimi-based products is introduced and its prospects for practical use are discussed.


surimi;heat-induced protein gel;kamaboko;modori;gel-softening, myosin;cystatin C;glycosylation


  1. An H, Peters MY, Seymour TA. 1996. Roles of endogeneous enzymes in surimi gelation. Trends Food Sci Technol 7: 321-326
  2. Watabe S, Hirayama Y, Nakaya M, Kakinuma M, Guo X-F, Kanoh S, Chaen S, Ooi T. 1998. Carp expresses fast skeletal myosin isoforms with altered motor functions and structural stabilities to compensate for changes in environmental temperature. J Them Biol 22: 375-390
  3. Ojima T, Kawashima N, Inoue A, Amauchi A, Togashi M, Watabe S, Nishita K. 1998. Determination of primary structure of heavy meromyosin region of walleye pollack myosin heavy chain by cDNA cloning. Fish Sci 64: 812-819
  4. Kawabata R, Kanzawa N, Ogawa M, Tsuchiya T. 2000. Determination of primary structure of amberjack myosin heavy chain and its relationship with structural stability of various fish myosin rods. Fish Physiol Biochem 23: 283-294
  5. Ogawa M, Tarmya T, Tuschiya T. 1994. Structural changes of carp yosin during heating. Fish Sci 60: 723-727
  6. Hashimoto A, Kobayashi A, Arai K. 1982. Thermostability of fish myofibrillar Ca-ATPase and adaptation to environmental temperature. Nippon Suisan Gakkaishi 48: 671-684
  7. Ogawa M, Tamiya T, Tsuchiya T. 1996. $\alpha$-Helical structure of fish actomyosin changes during storage. J Agric Food Chem 44: 2944-2925
  8. Rodgers ME, Karr T, Biedermann K, Ueno H, Harrington WF. 1987. Thermal stability of myosin rod from various species. Biochem 26: 8703-8708
  9. Kakinuma M, Nakaya M, Hatanaka A, Hirayama Y, Watabe S, Maeda K, Ooi T, Suzuki S. 1998. Thermal unfolding of three acclimation temperature-associated isoforms of carp light meromyosin expressed by recombinant DNAs. Biochem 37: 6606-6613
  10. Shimizu Y, Machida R, Takenami S. 1981. Species variations in the gel-forming characteristics of fish meat paste. Nippon Suisan Gakkaishi 47: 95-104
  11. Niwa E, Suzuki R, Hamada I. 1981. Fluorometry of the setting of fish flesh sol-supplement. Nippon Suisan Gakkaishi 47: 1389
  12. Itoh Y, Yoshinaka R, Ikeda S. 1979. Effects of sulfhydryl reagents on the gel formation of carp actomyosin by heating. Nippon Suisan Gakkaishi 45: 1023-1025
  13. Taguchi T, Kikuchi K, Oguni M, Tanaka M, Suzuki K. 1978. Heat changes of myosin B $Mg^{2+}$-ATPase and 'setting' of fish meat paste. Nippon Suisan Gakkaishi 44: 1363-1366
  14. Seki N, Uno H, Lee N, Kimura I, Toyoda K, Fujita T, Arai K. 1990. Transglutaminase activity in Alaska pollack muscle and surimi, and its reaction with myosin B. Nippon Suisan Gakkaishi 56: 125-132
  15. Numakura T, Seki N, Kimura I, Toyoda K, Fujita T, Takama K, Arai K. 1985. Cross-linking reaction of myosin in the fish paste during setting (suwari). Nippon Suisan Gakkaishi 51: 1559-1565
  16. Nowsad AAKM, Kanoh S, Niwa E. 1994. Setting of surimi paste in which trans glutaminase is inactivated N-ethylmaleimide. Fish Sci 60: 189-191
  17. Sano T, Noguchi SF, Matsumoto JJ, Tsuchiya T. 1990. Effect of ionic strength on dynamic viscoelastic behavior of myosin during thermal gelation. J Food Sci 55: 51-54
  18. Visessanguan W, Ogawa M, Nakai S, An H. 2000. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin. J Agric Food Chem 48: 1016-1023
  19. Ogawa M, Kanamaru J, Miyashita H, Tamiya T, Tsuchiya T. 1995. Alpha-helical structure of fish actomyosin: Changes during setting. J Food Sci 60: 297-299
  20. Ogawa M, Nakamura S, Horimoto Y, An H, Tsuchiya T, Nakai S. 1999. Raman spectroscopic study of changes in fish actomyosin during setting. J Agric Food Chem 47: 3309-3318
  21. Arakawa T, Timasheff SN. 1982. Stabilization of protein structure by sugars. Biochem 21: 6536-6544
  22. Carpenter JF, Crowe JH. 1988. The mechanism of cryoprotection of proteins by solutes. Cryobiol 25: 244-255
  23. MacDonald GA, Lanier T. 1991. Carbohydrates as cryoprotectants for meats and surimi. Food Technol 45: 151-159
  24. Sato S, Tsuchiya T. 1992. Microstructure of surimi and surimi-based products. In Surimi technology. Lanier TC, Lee CM, eds. Marcel Dekker, New York. p 501-518
  25. Sultanbawa Y, Li-Chan EC. 2001. Structural changes in natural actomyosin and surimi from ling cod (Ophiodon elongatus) during frozen storage in the absence or presence of cryoprotectants. J Agric Food Chem 49: 4716-4725
  26. Kimira I, Sugimoto M, Toyoda K, Seki N, Arai K, Fujita T. 1991. A study on cross-linking reaction of myosin in kamaboko 'surimi' gels. Nippon Suisan Gakkaishi 57: 1389-1396
  27. Seguro K, Nozawa Y, Ohtsuka T, Toiguchi S, Motoki M. 1995. Microbial transgulutaminase and $\varepsilon$-($\gamma$-glutamyl) lysine crosslink effects on alastic properties of kamaboko gels. J Food Sci 60: 305-311
  28. Jiang ST, Leu AZ, Tsai GJ. 1998. Cross-linking of mackerel surimi by microbial transglutaminase and ultraviolet irradiation. J Agric Food Chem 46: 5278-5282
  29. Jiang ST, Hsieh JF, Ho ML, Chung YC. 2000. Combination effects of microbial trans glutaminase, reducing agent and protease inhibitor on the quality of haitail surimi. J Food Sci 65: 421-425
  30. Jiang ST, Hsieh JF, Ho ML, Chung YC. 2000. Microbial trans glutaminase affects gel properties of golden threadfinbream and Pollack surimi. J Food Sci 65: 694-699
  31. Lorand L. 1983. Post-translationalpathways for generation $\varepsilon$-($\gamma$-glutarnyl) lysine cross-links. In Chemistry and biology of 2-macroglobulin. Feinman RD, ed. The New York Academy of Sciences, New York. p 10-27
  32. Yokoyama Kl, Nakamura N, Seguro K, Kubota K. 2000. Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci Biotechnol Biochem 64: 1263-1270
  33. Nishimura K, Ohishi N, Tanaka Y, Ohgita M, Takeuchi Y, Watanabe H, Gejima A, Samejima E. 1992. Effects of ascorbic acid on the formation process for heat-induced gel of fish meat (kamaboko). Biosci Biotech Biochem 56: 1737-1743
  34. Kaiser ST, Belitz HD. 1973. Specificity of potato isoinhibitors towards various proteolytic enzymes. Z Lebensm Unters Forsch 151: 18-22
  35. Wasso DH, Reppond KD, Babbitt JK, French JS. 1992. Effects of additives on proteolytic and functional properties of arrowtooth flounder surimi. J Aquat Food Prod Technol 1: 147-165
  36. Anazawa H, Miyauchi Y, Sakurada K, Wasson DH, Repond KD. 1993. Evaluation of protease inhibitors in Pacific whitening surimi. J Aquat Food Prod Technol 2: 79-95
  37. Porter R, Koury B, Kudo G. 1993. Inhibition of protease activity in muscle extracts and surimi from Pacific whiting, Merluccious productus, and arrowtooth flounder, Atheresthes stomias. Marine Fish Rev 55: 10-15
  38. Reppond KD, Babbittt JK. 1993. Protease inhibitors affect physical properties of arrowtooth flounder and well eye Pollock surimi. J Food Sci 58: 96-98
  39. Morrissey MT, Wu JW, Lin DD, An H. 1993. Effect of food grade protease inhibitor on autolysis and gel strength of surimi. J Food Sci 58: 1050-1054
  40. Werasinghe VC, Morrissey MT, An H. 1996. Characterization of active components in food-grade proteinase inhibitor for surimi manufacture. J Agric Food Chem 44: 2584-2590
  41. Garcia-Carreno FL, Navarrette Del Toro MA, Diaz-Lopez M, Hernandez-Cortes MP, Ezquerra JM. 1996. Proteinase inhibition of fish muscle enzymes using legume seed extracts. J Food Prot 59: 312-318
  42. Seymore TA, Peters MY, Morrissey MT, An H. 1997. Surimi gel enahacement by bovine plasma proteins. J Agric Food Chem 45: 2919-2923
  43. Yamashita M, Konagaya S. 1990. High activities of cathepsins B, D, H and L in the white muscle of chum salmon in spawning migration. Comp Biochem Physiol 95B: 149-152
  44. Kirschke H, Barrett AJ. 1987. Chemistry of lysosomal proteases. In Lysosomes-Their role in protein breakdown. Glaumann H, Ballard FJ, eds. Academic Press, London. p 193-238
  45. Lenarcic ICB, Kraoovec M, Ritonja A, Olafsson I, Turk V. 1991. Inactivation of human cystatin C and kininogen by human cathepsin D. FEBS Lett 280: 211-215
  46. Nakamura S, Takasaki H, Kobayashi K, Kato A. 1993. Hyperglycosylation of hen egg white lysozyme in yeast. J Biol Chem 268: 12706-12712
  47. Nakamura S, Ogawa M, Nakai S. 1998. Effects of polymannosylation of recombinant cystatin C in yeast on its stability and activity. J Agric Food Chem 46: 2882-2887
  48. Nakamura S, Ogawa M, Saito M, Nakai S. 1998. Application of polymannosylated cystatin to surimi from roeherring to prevent gel weakening. FEBS Lett 427: 252-254
  49. Liu D, ShiozawaY, Kanoh S, Niwa E. 1997. Effect of measuring temperature on the physical properties of horse mackerel gels. Nippon Suisan Gakkaishi 63: 231-236
  50. Olden K, Bernet BA, Humphries MJ, Yeo T-K, Yeo K-T, White SL, Newton SA, Bauer HC, Parent JB. 1985. Function of glycoprotein glycans. Trends Biochem Sci 10: 7882
  51. Gu J, Matsuda T, Nakamura R, Ishiguro H, Ohkubo I, Sasaki M, Takahashi N. 1989. Chemical deglycosylation of hen ovomucoid: protective effect of carbohydrate moiety on tryptic hydrolysis and heat denaturation. J Biochem 106: 66-70
  52. Hall A, Hakansson K, Mason RW, Grubb A, Abrahamson M. 1995. Structural basis for the biological specificity of cystatin C. Identification of leucine 9 in the N-terminal binding region as a selectivity-conferring residue in the inhibition of mammalian cysteine peptidases. J Biol Chem 270: 5115-5121
  53. Tzeng S, Jiang S. 2004. Glycosylation modification improved the characteristics of recombinant chicken cystatin and its application on mackerel surimi. J Agric Food Chem 52: 3612-3616
  54. Samejima K, Ishioroshi M, Yasui T. 1981. Relative role of the head and tail portions of the molecule in heatinduced gelatin of myosin. J Food Sci 46: 1412-1418
  55. Johnston IA, Goldspink G. 1975. Thermodynamic activation parameters of fish myofibrillar ATPase enzyme and evolutionary adaptations to temperature. Nature 257: 620-622
  56. Sakamoto H, Kumazawa Y, Toiguchi S, Seguro K, Soeda T, Motoki M. 1995. Gel strength enhancement by addition of microbial trans glutaminase during inshore surimi manufacture. J Food Sci 60: 300-304
  57. Kawai M, Takehana S, Takagi H. 1997. High-level expression of the chemically synthesized gene for microbial trans glutaminase from Streptoverticillium in Escherichia coli. Biosci Biotechnol Biochem 61: 830-835
  58. Turk V, Bode W. 1991. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285: 213-219
  59. Sano T, Noguchi SF, Tsuchiya, Matsumoto JJ. 1986. Contribution of paramyosin to marine meat gel characteristics. J Food Sci 51: 946-950
  60. Jiang S, Chen G, Tang S, Chen C. 2002. Effect of glycosylation modification ($N-Q-^{108}I{\rightarrow}N-Q-^{108}T$) on the freezing stability of recombinant chicken cystatin overexpressed in Pichia pastoris X-33. J Agric Food Chem 50: 5313-5317
  61. Jiang ST, Hsieh JF, Tsai GJ. 2004. Interactive effects of microbial transglutaminase and recombinant cystatin on the mackerel and hairtail muscle protein. J Agric Food Chem 52: 3617-3625
  62. An H, Weerasinghe V, Seymour TA, Morrissey MT. 1994. Degradation of Pacific whiteing surimi proteins by cathepsins. J Food Sci 59: 1013-1017
  63. Hssieh JF, Tsai GJ, Jiang ST. 2002. Microbial transglutaminase and recombinant cystatin effects on improving the quality of mackerel surimi. J Food Sci 67: 3120-3125
  64. Hamann DD, Amato PM, Wu MC, Foegeding EA. 1990. Inhibition of modori (gel weaiening) in surimi by plasma hydrolysate ane egg white. J Food Sci 55: 665-669

Cited by

  1. Natural Food Additives and Preservatives for Fish-Paste Products: A Review of the Past, Present, and Future States of Research vol.2017, pp.1745-4557, 2017,