Identification of Quantitative Trait Loci Associated with Isoflavone Contents in Soybean Seed

  • Kim Myung Sik (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University) ;
  • Park Min Jung (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University) ;
  • Hwang Jung Gyu (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University) ;
  • Jo Soo Ho (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University) ;
  • Ko Mi Suk (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University) ;
  • Chung Ill Min (Department of Applied Life Science, Konkuk University) ;
  • Chung Jong Il (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University)
  • Published : 2004.12.01


Soybean seeds contain high amounts of isoflavones that display biological effects and isoflavone content of soybean seed can vary by year, environment, and genotype. Objective of this study was to identify quantitative trait loci that underlie isoflavone content in soybean seeds. The study involved 85 $F_2$ populations derived from Korean soybean cultivar 'Kwangkyo' and wild type soybean 'IT182305' for QTL analysis associated with isoflavone content. Isoflavone content of seeds was determined by HPLC. The genetic map of 33 linkage groups with 207 markers was constructed. The linkage map spanned 2,607.5 cM across all 33 linkage groups. The average linkage distance between pair of markers among all linkage groups was 12.6 cM in Kosambi map units. Isoflavone content in $F_2$ generations varied in a fashion that suggested a continuous, polygenic inheritance. Eleven markers (4 RAPD, 3 SSR, 4 AFLP) were significantly associated with isoflavone content. Only two markers, Satt419 and CTCGAG3 had F-tests that were significant at P<0.01 in $F_2$ generation for isoflavone content. Interval mapping using the $F_2$ data revealed only two putative QTLs for isoflavone content. The peak QTL region on linkage group 3, which was near OPAG03c, explained $14\%$ variation for isoflavone content. The peak QTL region on linkage group 5, which was located near OPN14 accounted for $35.3\%$ variation for isoflavone content. Using both Map-Maker-QTL $(LOD{\geq}2.0)$ and single-factor analysis $(P{\leq}0.05)$, one marker, CTCGAG3 in linkage group 3 was associated with QTLs for isoflavone content. This information would then be used in identification of QTLs for isoflavone content with precision


  1. Barnes, S., H Kim, and J Xu 1999. Soy the prevention and treatment of chronic disease. Annals of the Brazilian Soybean Congress, pp 265-308. I Brazilian Soybean Congress, Londrina, PR, Brazil
  2. Chung, J., H. L. Babka, G L. Graef, P.E. Staswick, D. J. Lee, P. B. Cregan, R C Shoemaker, and J. E. Specht. 2003. The seed protein, oil, and yield QTL on soybean linkage Group I Crop Sci. 43 : 1053-1067
  3. Cregan, P.B , T Jarvik, A L. Bush, R. C Shoemaker, K. G Lark, A. L. Kahler, N. Kaya, T. T VanToai, D G Lohnes, J. Chung, and J. E. Specht. 1999. An integrated genetic linkage map of the soybean genome. Crop Sci. 39 . 1464-1490
  4. Diers, B W., R. Keim, W R Fehr, and R C. Shoemaker 1992 RFLP analysis of soybean seed protein and oil content Theor Appl Genet 83 : 608-612
  5. Eldndge, A C and W. F Kwolek. 1983 Soybean isoflavons: effect of environment and vanety on composition. J. Agric. Food Chem 31 : 394-396
  6. Erdman , J. W. Jr. and S. M Potter. 1997. Soy and bone health. The Soy Connection 5(2) 1-4
  7. Kosambi, D. D. 1944. The estimation of map distance from recombination values. Ann. Eugen. 12 . 172-175
  8. Keim, P, B. W. Diers, T C Olson, and R C Shoemaker 1990 RFLP mapping in soybean. Association between marker Ioci and variation in quantitative traits Genetics 126 . 735-742
  9. Keim, P., J. M. Schupp, S. E. Travis, K. Clayton, T. Zhu, L. Shi, A. Ferreira, and D. M. Webb 1997 A high-density soybean genetic map based on AFLP markers Crop Sci. 37 537-543
  10. Kim, H S., S. H. Lee, and Y. H. Lee. 2000. A genetic linkage map of soybean with RFLP, RAPD, SSR, and morphological markers Kor J. Crop Sci. Vol. 45(2) . 123-127
  11. Kim, H. S., S. H. Lee, K. Y. Park, and Y. H. Lee. 2000. Identification of quantitative trait loci associated with seed size and weight in soybean. Kor. J. Crop Sci. 45(4) : 227-231
  12. Kim, M. S , Y. J. Cho, D. J. Park, S. J. Han, J. H. Oh, J. G. Hwang, M. S. Ko, and J. I. Chung. 2003. Construction of genetic linkage map for Korean soybean genotypes using molecular markers Korean J. Crop Sci 48(4) : 297-302
  13. Kudou, S , Y , Fleury, D. Welti, D Magnolato, T Uchida, K Kitamura, and K. Okubo. 1991. Malonyl isoflavone glycosides in soybean seeds (Glycine max MERRILL). Agric Biol Chem 55 . 2227-2233
  14. Kurzer, M S 2000. Hormonal effects of soy isoflavones. studies in premenopausal and postmenopausal women, J. Nutr. 130 : 660S-661S
  15. Lander E. S and D. Botstein. 1989. Mapping mendelian factors underlying quantitative traits using RFLP likage maps. Genetics 121 185-199
  16. Lincoln, S., M. Daly, and E. Lander. 1992 Mapping genes controlling quantitative traits with MAPMAKER/QTL Whitehead Institutue Technical Report. Ed 2
  17. Lee, S. H , M A. Bailey, M. A R Mian, T E Carter, Jr , D A. Ashley, R. S Hussey, W. A Parrott, and H R Boerma. 1996 Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci. 36(3) . 728-735
  18. Lee, S H., K Y. Park, H S Lee, and H R. Boerma. 1999. Identification of quantitative trait loci associated with traits of soybean for sprout Korean J Crop Sci 44(2) : 166-170
  19. Lucimara, c., N. D Piovesan, L. K Naoe, I. C Jose, J. M. S Viana, M A Moreira, and E. G. D. Barros. 2004. Genetic parameters relating isoflavone and protein content in soybean seeds. Euphytica 138 . 55-60
  20. Mather, K. and J L Jinks. 1971. Bimmetrical Genetics. Chapman and Hall, London
  21. Mansur, L. M., K. G. Lark, H. Kross, and A. Oliveira. 1993 Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor. Appl. Genet 86 . 907-913
  22. Meksem, K , V N NJiti, W J Banz, M. J. Iqbal, M M. Kassem, D. L. Hyten, J. Yuang, T. A Winters, and D. A. Lightfoot 2001 Genomic regions that underline soybean seed isoflavone content J. of Biomedicine and Biotechnology 1(1) : 38-44
  23. Saghai-Maroof, M. A, K. M Soliman, R A. Jorgensen, and R W Allard. 1984 Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal Iocation and population dynamics. Proc Natl Acad Sci. 81 . 8014-8018
  24. Shoemaker, R C and J E. Specht 1995 Integration of the soybean molecular and classical genetic linkage groups Crop Sci. 35 : 436-446
  25. Tikkanen, M. J., K Wahala, S Ojala, V Wihma, and H. Adlercreutz. 1998. Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Nat Acad Sci. U.S A. 95 : 3106-3110
  26. Wang, H J. and P. A. Murphy 1994. Isoflavone content in commercial soybean foods. J Agric Food Chern 42: 1666-1673
  27. Yang K J and I. M. Chung. 2001. Yearly and genotypic variations in seed isoflavone content of local soybean cultivars. Korean J. Crop Sci 46(2) 139-144
  28. Yamanaka, N , S. Ninomiya, M Hoshi, Y. Tsubokura, M Yano, Y. Nagamura, T. Sasaki, and K Harada. 2001. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology, and regions of segregation distortion DNA Research 8 61-72