The Biomechanical Characteristics of Isoflavone-Treated Ovariectomized Rat's Femur

이소플라본을 투여한 난소절제 흰쥐 대퇴골의 생체역학적 분석

  • Kang S. (National Institute of Agricultural Engineering, RDA) ;
  • Park Y. H. (Institute of Life Science & Natural Resources, Korea University) ;
  • Paik M, K. (Department of Food and Nutrition, Hanyang University) ;
  • Om A. S. (Department of Food and Nutrition, Hanyang University)
  • Published : 2004.10.01


This study was to investigate the biomechanical characteristics of isoflavone-treated ovariectomized growing rat's femur. 4-week-old Wistar (female rats were randomly divided into 5 groups and assigned to sham(SH) group, and four ovariectomized groups consisting of one ovariectomized(OVX) group and genisetin(10 mg/kg b.w. )(OVX+G), daidzein(10 mg/kg b.w.)(OVX+D), and 17 $\beta$-estradiol(10 $\mu$g/kg b.w.)(OVX+ES) in AIN-76 modified diet for 8 weeks. The OVX groups gained more body weight than the SH group. Femoral weight was increased by feeding genistein and estradiol, whereas femoral length among groups was not significantly different. The breaking farce, stiffness, deformation, and energy values of the OVX group were lower than those of other groups. The stress, strain, and Young's modulus values of the OVX group were higher than those of other groups.


  1. 박명희, 윤 선, 정수연, 양승오, 유태무, 양지선, 권대중. 2001. 이소플라본 보충이 난소절제 흰쥐의 골대사에 미치는 영향. 한국식품영양과학회지. 30(4):657-661
  2. Adlercreutz, H. 1990. Western diet and western diseases; some hormonal and biochemical mechanisms and associations. Scandinavian Journal of Clinical and Laboratory Investigation. 50(S201);3-23
  3. Arjmandi, B. H., R. S. Birnbaum, S. Juma, E. Barengolts and S. C. Kukreja. 2000. The synthetic phytoestrogen, ipriflavone, and estrogen prevent bone loss by different mechanisms. Calcified Tissue International. 66(1):61-65
  4. Duncan, D. B. 1957. Multiple Range Tests for correlated and heteroscedastic Means. Biometrics. 13(2):164-176
  5. Felson D. T., Y. Zhang, M. T. Hannan, D. P. Kiel, P. W. Wilson and J. J. Anderson. 1993. The effect of postmenopausal estrogen therapy on bone density in elderly women. New England Journal of Medicine. 329(16): 1141-1146
  6. Grodin, J. M., P. K. Siiteri and P. C. MacDonald. 1973. Source of estrogen production in postmenopausal women. Journal of Clinical Endocrinology and Metabolism. 36(2):207-214
  7. Gurkan, L., A. Ekeland, K. M. Gautvik, N. Langeland, H. Ronningen and L. F. Solheim. 1986. Bone changes after castration in rats. Acta Orthopaedica Scandinavica. 57(1):67-70
  8. Kalu, D. N. 1991. The ovariectomized rat model of postmenopausal bone loss. Bone Mineral. 15(3): 175-191
  9. Miksicek, R. J. 1995. Estrogenic flavonoids: structural requirements for biological activity. Proceedings of the Society for Experimental Biology and Medicine. 208(1):44-50
  10. Pastoureau P., A. Chomel and J. Bonnet. 1995. Specific evaluation of localized bone mass and bone loss in the rat using dual-energy X-ray absorptiometry subregional analysis. Osteoporosis International 5(3):143-149
  11. Reeves, P. G., F. H. Nielsen and G. C. Fahey Jr. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition. 123(11):1939-1951
  12. St. Clair, R. W. 1998. Estrogens and atherosclerosis: phytoestrogens and selective estrogen receptor modulators. Current Opinion in Lipidology 9(5):457-463
  13. Thomas, M. L., M. J. Ibarra, B. Solcher, S. Wetzel and D. J. Simmons. 1988. The effect of low dietary calcium and calcium supplementation on calcium metabolism and bone in the immature, growing rat. Bone Mineral. 4(1):73-82
  14. Turner, C. H. and D. B. Burr. 1993. Basic biomechanical measurements of bone: A tutorial. Bone. 14(4):595-608