DOI QR코드

DOI QR Code

RESEARCH PAPERS : A REVIEW OF ARSENIC INTERACTIONS WITH ANIONS AND IRON HYDROXIDES

  • SunBaek Bang (Center for Environmental Systems, Stevens Institute of Technology) ;
  • XiaoGuang Meng (Center for Environmental Systems, Stevens Institute of Technology)
  • Published : 2004.08.31

Abstract

Keywords

arsenic;iron hydroxides;anion effect;adsorption;interaction

References

  1. Kim, M., Nriagu, J., and Haack, S., 'Arsenic species and chemistry in groundwater of southeast michigan,' Environ. Pollut., 120, 379-390 (2002) https://doi.org/10.1016/S0269-7491(02)00114-8
  2. Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., and Giger, W., 'Arsenic contamination of groundwater and drinking water in vietnam: A human health threat,' Environ. Sci. Technol., 35, 2621-2626 (2001) https://doi.org/10.1021/es010027y
  3. Meng, X., Korfiatis, G. P., Christodoulatos, C; and Bang, S., 'Treatment of arsenic in bangladesh well water using a household Co-precipitation and filtration system,' Water Res., 35, 2805-2810 (2001) https://doi.org/10.1016/S0043-1354(01)00007-0
  4. Burkel, R. S. and Stoll, R. C., 'Naturally occurring arsenic in sandstone aquifer water supply wells of northeastern wisconsin,' Ground Water Monitoring and Remediation, 19, 114-121 (1999) https://doi.org/10.1111/j.1745-6592.1999.tb00212.x
  5. Nickson, R., McArthur, J., Burgess, W., and Ahmed, K. M., 'Arsenic poisoning of bangladesh groundwater,' Nature, 395, 338 (1998) https://doi.org/10.1038/26387
  6. Pande, S. P., Deshpande, L. S., Patni, P. M., and Lutade, S. L., 'Arsenic removal studies in some ground waters of west bengal, india,' J. Environ. Sci. Health, A32(7), 1981-1987 (1997)
  7. Mandal, B. K., Chowdhury, T. R., Samanta, G., Basu, G. K., Chowdhury, P. P., Chanda, C. R., Lodh, D. L., Karan, N. K., Dhar, R. K., Tamili, D. K., Das, D., Saha, K. C., and Chakraborti, D., 'Arsenic in groundwater in seven districts of west bengal, india - The biggest arsenic calamity in the world,' Current Science, 70, 976-986 (1996)
  8. Chen, C. L., Dzeng, S. D., Yang, M. H., Chiu, K. H., Shieh, G. M., and Wai, C. M., 'Arsenic species in groundwaters of the blackfoot disease area, taiwan,' Environ. Sci. Technol., 28, 877-881 (1994) https://doi.org/10.1021/es00054a019
  9. Jackson, B. P. and Miller, W. P., 'Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides,' Soil Sci. Soc. Am. J, 64, 1616-1622 (2000)
  10. Xu, H., Allard, B., and Grimvall, A., 'Effect of acidification and natural organic materials on the mobility of arsenic in the environment,' Water Air Soil Pollution, 57-58, 269-278 (1991) https://doi.org/10.1007/BF00282890
  11. Cullen, W. R. and Reimer, K. J., 'Arsenic speciation in the environment,' Chem. Rev., 89, 713-764 (1989) https://doi.org/10.1021/cr00094a002
  12. Ferguson, J. F. and Gavis, J., 'A review of the arsenic cycle in natural waters,' Water Research Pergamon Press, 6, 1259-1274 (1972)
  13. Korte, N. E. and Fernando, Q., 'A review of arsenic(III) in groundwater,' Crit. Rev. Environ. Control, 21, 1-39 (1991) https://doi.org/10.1080/10643389109388408
  14. BGS and DPHE, Arsenic Contamination of Groundwater in Bangladesh, Technical Report WC/00/19, Volume 2: Final report, British Geological Survey, U.K. (2002)
  15. Meng, X., Korfiatis, G. P., Jing, C, Christodoulatos, C, 'Redox transformations of arsenic and iron in water treatment sludge during aging and TCLP extraction,' Environ. Sci. Technol., 35, 3476-3481 (2001) https://doi.org/10.1021/es010645e
  16. Alam, M. G. M., Tokunaga, S., and Maekawa, T., 'Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate,' Chemosphere, 43, 1035-1041 (2001) https://doi.org/10.1016/S0045-6535(00)00205-8
  17. Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B., and Bollinger, J., 'Arsenic adsorption onto pillared clays and iron oxides,' J. Colloid Interface Sci., 255, 52-58 (2002) https://doi.org/10.1006/jcis.2002.8646
  18. Scott, K. N., Green, J. F., Do, H. D., and Mclean, S. J., 'Arsenic removal by coagulation,' J. AWWA, 87(4), 114-126 (1995)
  19. Daus, B., Mattusch, J., Paschke, A., Wenn-rich, R., and Weiss, H., 'Kinetics of the arsenite oxidation in seepage water from a tin mill tailings pond,' Talanta, 51, 1087-1095 (2000) https://doi.org/10.1016/S0039-9140(00)00302-7
  20. Scott, M. J. and Morgan, J. J., 'Reactions at oxide surfaces. 1. Oxidation of As(III) by synthetic birnessite,' Environ. Sci. Technol., 29, 1898-1905 (1995) https://doi.org/10.1021/es00008a006
  21. Driehaus, W., Seith, R., and Jekel M., 'Oxidation of Arseniate(III) with manganese oxides in water treatment,' Water. Res., 29, 297-305 (1995) https://doi.org/10.1016/0043-1354(94)E0089-O
  22. Oscarson, D. W., Huang, P. M., and Liaw W. K., 'The oxidation of arsenite by aquatic sediments,' J. Environ. Qual., 9, 700-703 (1980)
  23. Violante, A. and Pigna, M., 'Competitive sorption of arsenate and phosphate on different clay minerals and soils,' Soil Sci. Soc. Am. J., 66, 1788-1796 (2002)
  24. Ahmad, S. A., Bandaranayake, D., Khan, A. W., Hadi, S. A., Uddin, G., and Halim, M. A., 'Arsenic contamination in ground water and arsenicosis in bangladesh,' International Journal of Environmental Health Research, 7, 271-276 (1997) https://doi.org/10.1080/09603129773724
  25. Buchet, J. P. and Lauwerys, R., 'Interpretation of inorganic arsenic metabolism in humans in the light of observations made in vitro and in vivo in the Rat,' Appl. Oranometal Chem., 8, 191-196 (1994) https://doi.org/10.1002/aoc.590080306
  26. Thirunavukkarasu, O. S., Viraraghavan, T., Subramanian, K. S., and Tanjore, S., 'Organic arsenic removal from drinking water,' Urban Water, 4, 415-421 (2002) https://doi.org/10.1016/S1462-0758(02)00029-8
  27. Karim, M., 'Arsenic in groundwater and health problems in bangladesh,' Water Res., 34, 304-310 (2000) https://doi.org/10.1016/S0043-1354(99)00128-1
  28. Wu, M. M., Kuo, T. L., Hwang, Y. H., and Chen, C. J., 'Dose-response relation between arsenic well water and mortality from cancer,' Am. J. Epidemiol., 130, 1123- 1132 (1989)
  29. Goldberg, S., 'Competitive adsorption of arsenate and arsenite on oxides and clay minerals,' Soil Sci. Soc. Am. J., 66, 413-421 (2002)
  30. Jain, A and Loeppert, R. H., 'Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydirte,' J. Environ. Qual., 29, 1179-1184 (2000)
  31. Raven, K. P., Jain, A. and Loeppert, R. H., 'Arsenite and arsenate adsorption on ferri-hydirte: Kinetics, equilibrium, and adsorption envelopes,' Environ. Sci. Technol., 32, 344-349 (1998) https://doi.org/10.1021/es970421p
  32. Manning, B. A., Fendorf, S. E. and Goldberg, S., 'Surface structures and stability of Arsenic(III) on goethite: Spectroscopic evidence for Inner-Sphere Complexes,' Environ. Sci. Technol., 32, 2383-2388 (1998) https://doi.org/10.1021/es9802201
  33. Sun, X. H. and Doner, H. E., 'An investigation of arsenate and arsenite bonding structures on geothite by FTIR,' Soil Sci., 161:12:865-872 (1996)
  34. Holm, T. R., 'Effects of $CO_3^{2-}$/bicarbonate, Si, and $PO_4^{3-}$ on arsenic sorption to HFO,' J. AWWA, 94(4), 174-181 (2002)
  35. Goldberg, S. and Johnson, C. T., 'Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling,' J. Colloid Interface Sci., 234, 204-216 (2001) https://doi.org/10.1006/jcis.2000.7295
  36. Bowell, R. J, 'Sorption of arsenic by iron oxides and oxyhydroxides in soils,' Appl. Geochem., 9, 279-286 (1994) https://doi.org/10.1016/0883-2927(94)90038-8
  37. Oscarson, D. W., Huang, P. M., and Hammer, U. T., 'Oxidation and sorption of arsenite by manganese dioxide as influenced by surface coatings of iron and aluminum oxides and calcium carbonate,' Water Air Soil Pollution, 20, 233-244(1983)
  38. McBride, M. B., 'A critique of diffuse double layer models applied to colloid and surface chemistry,' Clays Clay Miner., 45, 598-608 (1997) https://doi.org/10.1346/CCMN.1997.0450412
  39. Fendorf, S., Eick, M. J., and Sparks, D. L., 'Arsenate and chromate retention mechanisms on goethite: 1. Surface structure,' Environ. Sci. Technol., 31, 315-320 (1997) https://doi.org/10.1021/es950653t
  40. Waychunas, G. A., Rea, B. A., Fuller, C. C., and Davis, J. A., 'Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate,' Geochim. Cosmochim. Acta., 57, 2251-2269 (1993) https://doi.org/10.1016/0016-7037(93)90567-G
  41. Davis, C. C., Knocke W. R., and Edwards M., 'Implications of aqueous silica sorption to iron hydroxide: Mobilization of iron colloids and interference with sorption of arsenate and humic substances,' Environ. Sci. Technol., 35, 3158-3162 (2001) https://doi.org/10.1021/es0018421
  42. Sigg, L. and Stumm, W., 'The interaction of anions and weak acids with the hydrous goethite ($\alpha$-FeOOH) surface,' Colloids Surf, 2, 101-117 (1981) https://doi.org/10.1016/0166-6622(81)80001-7
  43. Swedlund, P. J. and Webster, J. G., 'Adsorption and polymerisation of silicic acid on ferrihydirte, and its effect on arsenic adsorption,' Water Res., 33, 3413- 3422 (1999)
  44. Anderson P. R. and Benjamin, M. M., 'Effects of silicon on the crystallization and adsorption properties of ferric oxides,' Environ. Sci. Technol., 19, 1048-1053 (1985) https://doi.org/10.1021/es00141a004
  45. Mayer, T. D. and Jarrell, W. M., 'Phosphorus sorption during iron(II) oxidation in the presence of dissolved silica,' Water Res., 34, 3949-3956 (2000) https://doi.org/10.1016/S0043-1354(00)00158-5
  46. Rushing, J. C, McNeill, L. S., and Edwards, M., 'Some effects of aqueous silica on the corrosion of iron,' Water Res., 37, 1080-1090 (2003) https://doi.org/10.1016/S0043-1354(02)00136-7
  47. Meng, X., Bang, S., and Korfiatis, G. P., 'Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride,' Water Res., 34, 1255-1261 (2000) https://doi.org/10.1016/S0043-1354(99)00272-9
  48. Deng, Y., 'Formation of iron(III) hydroxides from homogeneous solutions,' Water. Res., 31, 1347-1354 (1997) https://doi.org/10.1016/S0043-1354(96)00388-0
  49. Schenk, J. E. and Weber, W. J., 'Chemical interactions of dissolved silica with iron (II) and (III),' J. AWWA, 60, 199-212 (1968)
  50. Meng, X. and Letterman, R D., 'Effect of component oxide interaction on the adsorption properties of mixed oxides,' Environ. Sci. Technol., 27, 970-975 (1993) https://doi.org/10.1021/es00042a021
  51. Waltham, C. A. and Eick, M. J., 'Kinetics of arsenic adsorption on goethite in the presence of sorbed silicic acid,' Soil Sci. Soc. Am. J., 66, 818-825 (2002)
  52. Arai, Y. and Sparks, D. L., 'ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface,' J. Colloid Interface Sci., 241, 317-326 (2001) https://doi.org/10.1006/jcis.2001.7773
  53. Persson, P., Nilsson, N., and Sjoberg, S., 'Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface,' J. Colloid Interface sci. 177, 263-275 (1996)
  54. Tejedor-Tejedor, M. I. and Anderson, M. A., 'Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility,' Langmuir, 6, 602-611 (1990) https://doi.org/10.1021/la00093a015
  55. He, Q. H., Leppard, G. G., Paige, C. R, and Snodgrass, W. J., 'Transmission electron microscopy of a phosphate effect on the colloid structure of iron hydroxide,' Water Res., 30, 1345-1352 (1996) https://doi.org/10.1016/0043-1354(95)00305-3
  56. Lytle, D. A. and Snoeyink, V. L., 'Effect of ortho-and polyphosphates on the properties of iron particles and suspensions,' J. AWWA, 94(10), 87-99 (2002)
  57. Slomp, C. P., Van der Gaast, S. J., and Van Raaphorst, W., 'Phosphorus binding by poorly crystalline iron oxides in north sea sediments,' Mar. Chem., 52, 55-73 (1996) https://doi.org/10.1016/0304-4203(95)00078-X
  58. Wang, M. K. and Tzou, Y. M., 'Phosphate sorption by calcite, and iron-rich calcareous soils,' Geoderma, 65, 249-261 (1995) https://doi.org/10.1016/0016-7061(95)94049-A
  59. Geelhoed, J. S., Hiemstra, T., and Riemskijk, W. H., 'Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption,' Geochim. Comsmochim. Acta, 61, 2389-2396 (1997) https://doi.org/10.1016/S0016-7037(97)00096-3
  60. Hawke, D., Carpenter, P. D., and Hunter, K. A., 'Competitive adsorption of phosphate on goethite in marine electrolytes,' Environ. Sci. Technol., 23, 187-191 (1989) https://doi.org/10.1021/es00179a008
  61. Geelhoed, J. S., Hiemstra, T., and Riemskijk, W. H., 'Competitive interaction between phosphate and citrate on goethite,' Environ. Sci. Technol., 32, 2119-2123 (1998) https://doi.org/10.1021/es970908y
  62. Peryea, F. J., 'Phosaphte-Induced release of arsenic from soils contaminated with lead arsenate,' Soil Sci. Soc. Am. J., 55, 1301-1306 (1991)
  63. Villalobos, M. and Leckie, J. O., 'Carbonate adsorption on goethite under closed and open $CO_2$ conditions,' Geochim. Cosmochim. Acta, 64, 3787-3802 (2000) https://doi.org/10.1016/S0016-7037(00)00465-8
  64. Van Geen, A, Robertson, A. P., and Leckie, J. O., 'Complexation of carbonate species at the goethite surface: Implications for adsorption of metal ions in natural waters,' Geochim. Cosmochim. Acta, 58, 2073-2086 (1994) https://doi.org/10.1016/0016-7037(94)90286-0
  65. Zachara, J. M., Girvin, D. C, Schmidt, R. L., and Resch, C. T., 'Chemical modeling of anions competition on goethite using the constant capacitance model,' Environ. Sci. Technol., 21, 589-594 (1987) https://doi.org/10.1021/es00160a010
  66. Van Gree, A. and Leckie, J. O., 'Surface complexation modeling and FTIR study of carbonate adsorption to goethite,' J. Colloid Interface Sci., 235, 15-32 (2001) https://doi.org/10.1006/jcis.2000.7341
  67. Wijnja, H. and Schulthess, C. P., 'Effect of carbonate on the adsorption of selenate and sulfate on goethite,' Soil Sci. Soc. Am. J., 66, 1190-1197 (2002)
  68. Bargar, J. R., Reitmeyer, R., Lenhart, J. J., and Davis, J. A., 'Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements,' Geochim. Comsmochim. Acta, 64, 2737-2749 (2000) https://doi.org/10.1016/S0016-7037(00)00398-7
  69. Ostergren, J. D., Trainor, T. P., Bargar, J. R., Brown, G. E., and Parks, G. A., 'Inorganic ligand effects on Pb(II) sorption to goethite ($\alpha$-FeOOH): I. carbonate,' J. Colloid Interface Sci., 225, 466-482 (2000) https://doi.org/10.1006/jcis.1999.6701
  70. Fuller, C. C., Davis, J. A, and Waychunas, G. A., 'Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation,' Geochim. Cosmochim. Acta, 57, 2271-2282 (1993) https://doi.org/10.1016/0016-7037(93)90568-H
  71. Wilkie, J. A and Hering, J. G., 'Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes,' Colloid. Surf. A: Physicochem. Eng. Aspects, 107, 97-110 (1996) https://doi.org/10.1016/0927-7757(95)03368-8
  72. Kim, M., Nriagu, J., and Haack, S., 'Carbonate ions and arsenic dissolution by ground-water,' Environ. Sci. Technol., 34, 3094-3100 (2000) https://doi.org/10.1021/es990949p
  73. Nickson, R. T., McArthur, J. M., Raven-scroft, P., Burgess, W. G., and Ahmed, K. M., 'Mechanism of arsenic release to groundwater, Bangladesh and West Bengal,' Appl. Geochem.. 15, 403-413 (2000)
  74. Appelo, C. A. J., Van der Weiden, M. J. J., Tournassat, C., and Charlet, L., 'Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic,' Environ. Sci. Technol., 36, 3096-3103 (2002) https://doi.org/10.1021/es010130n
  75. Liu, F., De Cristofaro, A, and Violante, A, 'Effect of pH phosphate and oxalate on the adsorption/desorption of arsenate on/from goethite,' Soil Sci., 166, 197-208 (2001) https://doi.org/10.1097/00010694-200103000-00005
  76. Meng, X., Korfiatis, G. P., Bang, S., and Bang, K., 'Combined effects of anions on arsenic removal by iron hydroxides,' Toxicol. Lett., 133, 103-111 (2002) https://doi.org/10.1016/S0378-4274(02)00080-2

Cited by

  1. Arsenic removal from water using iron-impregnated granular activated carbon in the presence of bacteria vol.45, pp.2, 2010, https://doi.org/10.1080/10934520903429832
  2. Glassy Carbon Electrode Modified with Citrate Stabilized Gold Nanoparticles for Sensitive Arsenic (III) Detection vol.45, pp.10, 2012, https://doi.org/10.1080/00032719.2012.673108
  3. Effects of microbial processes on the fate of arsenic in paddy soil vol.58, pp.2, 2013, https://doi.org/10.1007/s11434-012-5489-0
  4. Diversity of arsenite oxidizing bacterial communities in arsenic-rich deltaic aquifers in West Bengal, India vol.5, pp.1664-302X, 2014, https://doi.org/10.3389/fmicb.2014.00602
  5. Evaluation of phosphate-uptake mechanisms by Fe(III) (oxyhydr)oxides in Early Proterozoic oceanic conditions vol.15, pp.2, 2018, https://doi.org/10.1071/EN17124
  6. Arsenic forensic modeling leads to decommission of downgradient/off-site monitoring wells vol.19, pp.2, 2018, https://doi.org/10.1080/15275922.2018.1449037
  7. Distribution and potential ecological risk assessment of trace elements in the stream water and sediments from Lanmuchang area, southwest Guizhou, China vol.26, pp.4, 2019, https://doi.org/10.1007/s11356-018-3827-8