Studies on the Sorption Behavior of Some Metal Ions using XAD-16-Chromotropic Acid Chelating Resin

XAD-16-Chromotropic Acid 킬레이트 수지를 이용한 몇 가지 금속이온의 흡착거동에 관한 연구

  • Lee, Won (Research Institute for Basic Sciences and Department of Chemistry, Kyunghee University) ;
  • Kim, Mi-Kyoung (Research Institute for Basic Sciences and Department of Chemistry, Kyunghee University) ;
  • Kim, In-Whan (Department of Chemistry Education, Daegu University) ;
  • Kim, Jun-Yong (Research Institute for Basic Sciences and Department of Chemistry, Kyunghee University) ;
  • Kim, Jung-Sook (Research Institute for Basic Sciences and Department of Chemistry, Kyunghee University)
  • 이원 (경희대학교 기초과학연구소, 이과대학 화학과) ;
  • 김미경 (경희대학교 기초과학연구소, 이과대학 화학과) ;
  • 김인환 (대구대학교 사범대학 화학교육과) ;
  • 김용준 (경희대학교 기초과학연구소, 이과대학 화학과) ;
  • 김정숙 (경희대학교 기초과학연구소, 이과대학 화학과)
  • Received : 2004.07.16
  • Accepted : 2004.11.02
  • Published : 2004.12.25

Abstract

The sorption behavior of some metal ions on XAD-16-CTA chelating resin was investigated by batch method. The sorption of chelating resin was highly selective for Hf(IV), Zr(IV) and Th(IV) at pH 3.0 ~ 6.0 and the maximum sorption capacity of Zr(IV) ion was 0.81 mmol/g. It was successfully applied to the separation of several rare metal ions from mixed metal solutions by using CDTA, EDTA, NTA and $NH_4F$ as masking agent. The elution order of metal ions obtained from breakthrough capacity and the overall capacity at pH 4.0 was Zr(IV)>Th(IV)>Hf(IV)>U(VI)>Cu(II)>In(III)>Pb(II). Desorption characteristics for metal ions was investigated with desorption agents such as HCl, $HNO_3$, $HClO_4$. 2 M HCl showed high desorption efficiency. Th(IV) ion can be successfully separated from mixed metal ions by using XAD-16-CTA cheating resin.

Keywords

XAD-16-CTA chelating resin;breakthrough capacity;overall capacity;desorption

References

  1. V. G. Escobar, F. V. Tone, J. C. Lozano and A. M. Sanchez, Appl. Radiot. Isot., 49, 875(1998).
  2. R. F. Hamon, A. S. Khan and A. Chow, Talanta, 29, 313(1982).
  3. M. Chanda and G. L. Rempel, Ind. Eng. Chem. Res., 36, 2190(1997).
  4. K. Brajter and E. D. Zlotorzynska, Talanta, 33, 149(1986).
  5. Ladislav S. Pavel. J. and Jaroslav C., Collet. Czech. Chem. Commun., 56, 327(1991).
  6. M. Hiraide, S. D. Tillekeratine, K. Otsuk and A. Mizuike, Anal Chim Acta, 172, 215(1985).
  7. J. Tohn and R. N. Ram, Polymer International, 34, 369(1994).
  8. B. B. Prasad and S. Sundd, Bull Chem. Soc. Jpn., 68, 559(1995).
  9. J. P. Ghosh and H. R. Das, Talanta., 8, 274(1981). https://doi.org/10.1016/0039-9140(81)80057-4
  10. J. R. Parrish, Anal Chem., 49, 1189(1997).
  11. S. Imal, M. Murol, A. Hamagucho and M. Koyama, Anal. Chem., 55, 1215(1983).
  12. V. T. Athavale, N. Mahadevan, P. K. Mathur and R. K. Sathe, J. inorg. nucl. Chem., 29, 1947-1951(1967).
  13. T. Yokoyama, A. Makishima and E. Nakamura, Anal. Chem., 71, 135(1999).
  14. C. Sarzamini, V. Porta and E. Mentasti, New J. Chem., 13, 463(1989).
  15. W. Lee, C. Y. Lee, M. K. Kim and I. W. Kim, Anal. Sci. & Tech., 17(3), 199(2004).