A κ-Span Secret Sharing Schem with Exposing Forged Shadows

참가자에게 노출되지 않은 κ-생성 비밀분산방식

  • 박택진 (강릉영동대학 전자정보과) ;
  • 원동호 (성균관대학교 정보통신공학부)
  • Published : 2004.10.01


In the secret sharing scheme, the reconstruction secret must to exposed to participants. In order to enforce the same secret sharing schemes, a new secret have to regenerate and redistribute for participants. Such a regeneration process is inefficient because of the overhead in the regeneration. In this paper, we proposed efficient secret regeneration scheme by eigenvalue. it can be also redistribution without revealing with other participants.

비밀분산방식에서, 재구성된 비밀은 참가자에게 노출된다. 동일한 비밀분산 방식을 유지하기 위해서, 새로운 비밀을 생성하고 참가자에게 재분배하여야 한다. 그러한 재생성과정은 비효율적이다. 본 논문은 참가자에게 노출되지 않고 고유치에 의해 효율적인 비밀 재생성과 재분배할 수 있는 방식을 제안한다.


  1. G. R. Blakley, 'Safeguarding Cryptographic keys,' in Proc. Amer. Fed. Inform. Proc. Soc. NCC, vol.48, pp.313-317, June, 1977
  2. A, shmir, 'How to Share a Secret,' communication ACM, Vol.22, No.11, pp.612-613, Nov., 1979
  3. C. S. Laih, M. D. Lin and T. Hwang, 'A new threshold scheme with detecting and exposing forged shadows,' ISITA '90, pp.1053-1056, November, 1990
  4. C. S. Laih, L. Harn, J. Y. Lee and T. Hwang, 'Dynamic Threshold Scheme Based on the Definition of Cross-product in an N-Dimensional Linear Space,' Proc. Crypto '87, Springer-Verlag, pp.286-279
  5. L. Harn and Hung-Yu Lin, 'A ${\ell$}-Span Generalized Secret Sharing Scheme,' Proc. Crypto '92, Springer-Verlag, pp.558-565
  6. Lee W., Johnson R., Dean Riess Jimmy T., Arnold, 'Introduction to Linear Algebra,' Addison-Wesley. Inc. 1993
  7. S. C. Kothari, 'Generalized Linear Threshold Scheme,' in Proc Cryto '86, Springer-Verlag, pp.231-241
  8. Mathematica lCryptology for Computer Scientists and Mathematicians, WAYNE PATTERSON, ROWMAN & LITTLEFIELD Pubilshers
  9. W. Diffie and M. E. Hellman, 'New Directions In Cryptography,' IEEE Transaction on Information Theory, Vol.IT-22, pp.644-65, 1976
  10. C. Asmuth and J. Bloom, 'A Modular Approach To Key Safeguarding,' IEEE Transaction on Information Theory, Vol.IT-29, No.2, pp.208-210, March, 1983
  11. M. Tompa and H. Woll, 'How To Share A Secret With Cheaters,' Crypto '86 pp.261-265
  12. Benaloh, j. and J. Leichter, generalized Secret Sharing and Monotone Functions, Advances in Cryptography - Crypto '86, A. M. Odlyzko (ed.), Springer-Verlag, Lecture Notes in Computer Science, Vol.236, pp.213-222, 1987
  13. Ernest F. Brickell, Some Ideal Secret Sharing Schemes, Proc. Crypto '88, Springer-Verlag, pp.468-475
  14. Ernest F. Brickell and Daniel M. Davenport, On the Classification of Ideal Secret Sharing Schemes, Proc. Crypto '88, Springer-Verlag, pp.279-285