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EULER SUMS EVALUATABLE FROM INTEGRALS

MYUNGHO JUNG, YOUNG JOON CHO AND JUNESANG CHOI

ABSTRACT. Ever since the time of Euler, the so-called Euler sums
have been evaluated in many different ways. We give here a proof
of the classical Euler sum by following Lewin’s method. We also
consider some related formulas involving Euler sums, which are
evaluatable from some known definite integrals.

1. Introduction and preliminaries

The Riemann Zeta function ((s) is defined by

(1.1)
o ;$=1-2~s;(2n—1)s R > 1)
§) =
(1—2'%)" Z(lnl (R(s) > 0; s #1),

which can, except for a simple pole at s = 1 with its residue 1, be
continued meromorphically to the whole complex s-plane. The Hurwitz
(or generalized) Zeta function ((s,a) defined by

(1‘2) C(s,a) = 2:; k+a
-1 .

(R(s) > 1; a ¢ Zy = {0, b,
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can, just as ((s), be continued meromorphically to the whole complex

s-plane except for a simple pole at s = 1 with its residue 1 (see, for
details, [23] and [24]). Clearly, we have

(13) ¢(s,1)=C¢(s)=(2*-1)""((s,%) and ((5,2)=((s) - 1.

The following identity was discovered by Euler in 1775 and has a long
history (see, for example, [4, p. 252 et seq.]):

(1.4 > Y =)

n=1

where H,, := H,gl) denotes the harmonic numbers and H,(Ls) denotes the
generalized harmonic numbers defined by

“ 1
(1.5) H}ﬁ::ZE (neN:={1,2,3,...}; seC),
k=1

so that, obviously, we have
(1.6) H®) =¢(s)—¢(s,n+1) (R(s) >1; neN).

The identity (1.4) is a special case of the following more general sum
due to Euler:

Z‘k—k (n+2)¢(n+1)— Z(n k)¢(k+1) (neN\{1}),
k=1

or, equivalently,

oo n—2
Hy,
1.8) 2 =n((n+1) n—k){(k+1 n € N\{1}),
( );(Hl)n S ;c )((k+1)  (n € N\{1})
where (and in what follows) an empty sum is understood to be nil.
Many different techniques have been used, in the vast mathematical
literature, in order to evaluate harmonic sums of the types (1.4) and
(1.8). For example, Borwein and Borwein [5] established the following
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interesting sums by applying Parseval’s identity to a Fourier series and
contour integrals to a generating function:

19) 3 (fil) e,

(1.10) i (%)2 = %6(4),

(1.11) > Mo 24(4)-

We give here a proof of the Euler sum (1.8) by following Lewin’s
method and consider some formulas related to Euler sums.

For the sake of ready reference in our present investigation, we recall
here the definitions of the Polylogarithm functions Li,(z) (n € N) and
the Polygamma functions (™ (2) (n € N) as follows:

Lin(2): =Y — (2 <1; neN\{1})
(1.12) k=1
= [ Lip_1(t) % (n e N\ {1, 2})
0
and
m+1 dn
(1.13) v™(z) = 71 108T(2) = —u(z) (n€No:=NU{0}),

where 1()(2) := 4(z) denotes the Psi (or Digamma) function defined
by

I'(z)
I'(z)

in terms of the classical Gamma function. Furthermore, in terms of the
Hurwitz Zeta function (s, a) defined by (1.2), we have the relationship:

(1.14)  ¢(z) := diz log T'(z) = or logI'(z)= /: P(t)dt

(1.15) P (2) = (=1)"H nl¢(n+1,2) (neN).
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2. Certain Euler sums evaluatable from definite integrals
Setting £ = 1 in equation (7.65) in Lewin [13, p. 204] gives

(2.1) /logt{log(l t)}zdt —g-gi).

By using the Maclaurin series expansion of log(1 — t), we obtain

oo k—1
(2.2) {log(1-t)y* = % (Z %) tf (-1<t<1).
k=2 i=1

We recall a known integral formula:

log(at) 1
n+1l (n+1)2

(2.3) / t" log(at) dt = ™! [ ] (n>0),

which, upon setting a = 1 and n = k — 1, yields

logt 1
k—1 k
(2.4) /t logtdt =t [k ﬁ] (k> 1)
and
! 1
(2.5) / k-1 logtdt=—-5 (k> 1).
1}

It follows from (2.2) and (2.5) that

! pdt 1 (K1
1 o 2 z -
/0 ogt{log(l1—1t)} , 22 A 7 /0 t* ' logtdt

k=2

which, in view of (2.1), gives a known Euler sum:

(2:6) Z (n+ Crnche 764,
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which is easily seen to be equivalent to (1.11).
Recall an integral formula (see (13, p. 310, equation (7)]):

/”‘ {log(1 +1)}? it

t
(2.7) = logz {log(1 + )}? — ; {log(1 + z)}®

. 1 . 1 )
-2 log(l +II)) L12 <m> — 2L13 <].-+-_CL'> + 2L13(1).

By applying (2.2) to (2.7), we obtain
(2.8)

_— ) o vk [k-1
/O {1 g(1t+t)} dt:2’§2(k? (Z %)  (-1<z<1).

j=1

Setting = 1 in (2.7) and (2.8), and considering the following known
identities:

(2.9) Liz (3) = 3 ¢(2) - § (log2)®
and
(2.10) Liz (1) = 2¢(8) — 3 ¢(2) log2 + 2 (log2)?,
we get

1
(2.11) /0 M dt =1¢(3)
and

o0 (_1)k+1 Hy B
(2.12) ; D T8 ¢(3).

Recall another integral formula similar to (2.7) (see [13, p. 310, equa-
tion (6)]):
[ otz

(2.13) 0

= logz {log(1 — z)}?
+2 log(1 — ) Lig(1 — z) — 2Liz(1 — ) + 2 Liz(1).

Employing (2.13), similarly as in getting (2.12) and (2.13), we have the
formula (1.4) and

o0

(2.14) kZ—l ﬁi—l)z =1¢(3) — 1 (log2)>.



550 Myungho Jung, Young Joon Cho and Junesang Choi
3. Further analysis of Lewin’s method

We begin by recalling the Eulerian first integral (see {13, 7.9.5]):
(3.1)

/0 (1= 1) =1 gt — ler“zl*il;(i;f) (RO) > —1; R(w) > 0).

We obtain, by multiple differentiation of (3.1) with respect to A and u,
(3.2)

1
/0 {log(1 ~ 1)}" (tog t)™ % = D} D]

r1+2)TrQ +u)]
pT(1+ X+ u)

A=p=0

If we put y = log I'(1 + A) + log I'(1 + p) — log T'(1 + X + u), with the
aid of (1.15), we have

DiID¥y= (-1’1 (p+q—- 1P+ g1+ +p)

and so
DEDLyl\ o (1P (p+q—1)1¢(p+q)

and

We thus have
1 dt
{log(1 —t)}" (log t)™ -
0

(3.3) . s oo
= D" DY [; exp (—Z > )\WA,,,,,)]

p=1 q=1

A=pu=0

where, for convenience,

p+q—1)!
Ap,q = (—1)PHe ptg—1) p,qq| ) ¢(p+9).
If we put

xd
Z 1% Ay = By,

g=1
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then (3.3) can be rewritten in the following form:

/ {log(1 — )}" (log )™ dt

(3.4) 0
= D DY [— exp ( Z )\po>

=1

A=p=0
In particular, the special case of (3.4) when n = 2 yields

/ " (tog ™ {log(1 ~ 1)}? &

(3.5) = DZ’D?\ [— exp( Z AP B, )

=Dy E {(B1)* - 232}]

A=p=0

pn=0
Note that
>0
(B1)? (Z A gy ) = Coul,
g=2
where
g—1
Cq = Al,j Al,q—j-
j=1
We find that

" { 31)2_232} _—2A21+Z Co+1 — 2 Az,441) pf

g=1

and
1
Dy [— {(B1)* - 232}}
I
We thus have

/ ' (1og 0™ {log(1 — )32 &
0 t

=m! (Crny1 — 2 A2,m+1)

u=0

=m!(-1)™ [(m+2)é(m+3)—z CA+j)¢(m+2-)

Jj=1

551

(m S No)
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which, upon considering (2.2) and

1
k—1 m _ (_1)m m!
(3.6) /0 # (log )™ dt = LT

yields an evaluation of the following Euler sum:

Z (k + 1)m+2
(3.7) m
=m2((m+3) -1 > ((1+5)¢(m+2-j) (meNy),
j=1

which is easily seen to be equivalent to the classical Euler sum (1.8).
It is also seen that

o5 (-5 )

p=1 A=0
(o2 =n! Z (- 1)k1+k2+ +k, B1 ’: ﬁ:kz : ‘kB'nk",
bR ., e
which, for n = 2, immediately yields
(3.9) D} [exp( ZA”B )] = By? - 2B,.
A=0

Observe

m+1 ks
ki _ (Z A;qpt ) + terms of degrees > m + 2 in p

(m+1) k; )
= Z EJ(.’) u? + terms of degrees > m + 2 in p,
=0
where, for: =1, 2, ...,n,

e ¢ ¢
Z kil Ain™ Aig™ - Aimgr ™t

(1) ._
(3.10) BY := R o
e1a€27'~'7zm+leN0
b +lp+ Al 1=k

£142 824 +(m+1) €y p1=7



Euler sums evaluatable from integrals 553

We find that the term in u™*! of

(m+1)ki

n n
[ -1 % &'
i=1 i=1 =0
is
(1) (2) (n) +1
Z E5 B, B e
J1,32, -, Jn€No
JHgate A a=m+1
and so
Dy [% B,* B," “'B"kn] p=0
3.11 _ (1) (2) (n)
(3-11) =m! Z 10 Nl

J1,d2,-5Jn€No
Sitge+etin=m+1

It follows from (3.4), (3.8), and (3.11) that

1 dt
| ttog1 )y og 0" G
0
(_1)k1+k2+"'+kn
= ntm!
= . kzk o kil k!
(3.12) ba b o b
(1) (2) (n)
x Z Ejl Ej2 '”Ejn K

. jl’_j'a’; ---7.7:n€N0
Ntjz+-tin=m+l

where EJ(:) (=1, 2,...,n) are given as in (3.10).
It is remarked that the integral in (3.12) is evaluated in terms of {(s)
and can be changed in the following form:

is

2
/ (log sin 8)™ (log cos 8)™ cot 0d6,
0

by substituting ¢ = sin® 6, as commented in Lewin [13, p. 222].
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