Communications of the Korean Mathematical Society (대한수학회논문집)
- Volume 19 Issue 3
- /
- Pages.469-475
- /
- 2004
- /
- 1225-1763(pISSN)
- /
- 2234-3024(eISSN)
DOI QR Code
DIMENSION OF DEFORMED SELF-SIMILAR SETS
- Kim, Tae-Hee (Department of Mathematics Kyungpook National University) ;
- Park, Jung-Ju (Department of Mathematics Kyungpook National University) ;
- Lee, Hung-Hwan (Department of Mathematics Kyungpook National University)
- Published : 2004.07.01
Abstract
We generalize S. Ikeda's results for perturbed cantor sets showing how we get the dimensions for deformed self-similar sets.
File
References
- Fractal geometry-Mathematical foundations and applications K. J. Falconer
- Hiroshima Math. J. v.25 On loosely self-similar sets S. Ikeda
- Topology Appl. Dimensions of Measures on perturbed Cantor set S. Ikeda;M. Nakamura
- Korean J. Math. Soc. Packing dimension for deformed self-similar sets T. H. Kim;H. H. Lee
- Hiroshima Math. J. v.32 The Hausdorff dimension for deformed self-similar sets T. H. Kim;S. P. Hong;H. H. Lee
- Hausdorff measures C. A. Rogers
- Trans. Amer. Math. Soc. v.288 The packing measure and its evaluation for a Brownian path S. J. Taylor;C. Tricot https://doi.org/10.2307/1999958