• Uckun, Mustafa (Department of Mathematics Faculty of Arts and Sciences Inonu University) ;
  • Ozturk, Mehmet Ali (Department of Mathematics Faculty of Arts and Sciences Cumhuriyet University) ;
  • Jun, Young-Bae (Department of Mathematics Education Gyeongsang National University)
  • Published : 2004.07.01


Conditions for a $\Gamma$-near-ring to be commutative are investigated.


  1. Pacific J. of Math. v.18 no.3 On the ${\Gamma}$-rings of Nobusawa W. E. Barnes
  2. Studia Sci. Math. Hungarica v.23 A note on ${\Gamma}$-near-rings G. L. Booth
  3. Quaestions Mathematicae v.14 Equiprime ${\Gamma}$-near-rings G. L. Booth;N. J. Groenewald
  4. Indian J. Pure & Appl. Math. v.33 no.10 Gamma-derivations in prime and semiprime gamma-near-rings Y. U. Cho;Y. B. Jun
  5. Soochow J. Math. On gamma-derivations in gamma-near-rings Y. B. Jun;K. H. Kim;Y. U. Cho
  6. Pacific J. of Math. v.75 no.1 On prime gamma rings S. Kyuno
  7. Michigan Math. J. v.16 On the theory of simple ${\Gamma}$-rings J. Luh
  8. Osaka J. Math. v.1 On a generalization of the ring theory N. Nobusawa
  9. Commun. Korean Math. Soc. v.15 no.3 On the centroid of the prime gamma rings M. A. Ozturk;Y. B. Jun
  10. On trace of symmetric bi-gamma-derivations in gamma-near-rings M. A. Ozturk
  11. Near-rings, (2nd edtion) G. Pilz
  12. Proc. Japan Acad. Ser. A Math. Sci. v.59 no.8 A note on ${\Gamma}$-rings B. Satyanarayana
  13. Doctoral Thesis, Nagarjuna University Contributions to near-ring theory B. Satyanarayana
  14. Indian J. of Math. v.41 no.3 A note on ${\Gamma}$-near-rings B. Satyanarayana

Cited by

  1. On Prime-Gamma-Near-Rings with Generalized Derivations vol.2012, 2012,