DOI QR코드

DOI QR Code

Molecular Dynamics Simulations of Fullerene Nanostructure Fabrications by Atomic Force Microscope Carbon Nanotube tip

원자간력 현미경 탄소 나노튜브 팁을 이용한 플러렌 나노 구조물 제작에 관한 분자동역학 시뮬레이션

  • 이준하 (상명대학교 공과대학 컴퓨터시스템공학) ;
  • 이홍주 (상명대학교 공과대학 컴퓨터시스템공학)
  • Published : 2004.08.01

Abstract

This paper shows that carbon nanotubes can be applied to a nanopipette. Nano space in atomic force microscope multi-wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic forces. Since the nano space inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications demonstrated the possibility of nano-lithography or single-metallofullerene-transistor array fabrication.

References

  1. 전기전자재료학회논문지 v.16 no.12S 가상의 단일별 실리콘 나노튜브의 비틀림 변기량;강정원;이준하;권오근;황호정
  2. 전기전자재료학회논문지 v.17 no.2 3족-질화물 나노튜브의 원자단위 연구 변기량;강정원;이준하;권오근;황호정
  3. 전기전자재료학회논문지 v.17 no.3 탄소 나노튜브 내부에 삽입된 칼륨 구조 변기량;강정원;송기오;최원영;황호정
  4. Phys. Rev. B. v.66 Clustering of $H_2$ molecules encapsulated in fullerene structures R. E. Barajas-Barraza;R. A. Guirado-Lopez https://doi.org/10.1103/PhysRevB.66.155426
  5. Nature v.396 Encapsulated $C_{60}$ in carbon nanotubes B. W. Smith;M. Monthioux;D. E. Luzzi
  6. Phys. Rev. Lett. v.82 Bucky Shuttle, Memoty Device : Synthetic Approach and Molecular Dynamics Simulations Y. K. Kwon;D. Tomanek;S. Iijima https://doi.org/10.1103/PhysRevLett.82.1470
  7. Am. Sci. v.85 Fullerene nanotubes : $C_{1,000,000}$ and beyond B. I. Yakobson;R. E. Smalley
  8. Inorganica Chimica Acta v.330 Structural Changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes : a brief review J. Sloan;S. Friedrichs;R. R. Meyer;A. I. Kirkland;J. L. Hutchison;M. L. H. Green https://doi.org/10.1016/S0020-1693(01)00774-5
  9. Carbon v.40 Filling single-wall carbon nanotubes M. Monthioux
  10. Appl. Mech. Rev. v.55 Machanics of carbon nanotubes D. Qian;G. J. Wagner;W. K. Liu;M. F. Yu;R. S. Ruoff https://doi.org/10.1115/1.1490129
  11. Nano Lett. v.4 Ion transport in nanofluidic channels H. Diguji;P. Yang;A. Majumdar https://doi.org/10.1021/nl0348185
  12. Mol. Sim. v.30 Ion transport in simple nanopores K. Y. Chan;Y. W. Tang;O. Szalai https://doi.org/10.1080/0892702031000152235
  13. Nanotechnology v.7 Dynamics of fluid flow inside carbon nanotubes R. E. Tuzun;D. W. Noid;B. G. Sumpter;R. C. Merkle https://doi.org/10.1088/0957-4484/7/3/012
  14. Nanotechnology v.8 Dynamics of flow inside carbon nanotubes R. E. Tuzun;D. W. Noid;B. G. Sumpter;Ralph C. Merkle https://doi.org/10.1088/0957-4484/8/3/003
  15. Nanotechnology v.15 Submicrometre-scale fabrication of polycarbonate surface using a scanning micropipette probe microscope F. Iwata;Y. Sumiya;S. Nagami;A. Sasaki https://doi.org/10.1088/0957-4484/15/5/003
  16. Nature v.394 Covalently functionalized nanotubes as nanometer-sized proves in chemistry and biology S. S. Wong;E. Joselevich;A. T. Woolley;C. L. Cheung;C. M. Lieber https://doi.org/10.1038/27873
  17. Nature v.398 Growth of nanotubes for porbe microscopy tips J, H, Hafner;C. L. Chueng;C. M. Liber https://doi.org/10.1038/19658
  18. J. Korean Phys. Soc. v.44 no.4 Nano-Memory-Element Applications of Carbon Nanocapsule Encapulating Potassium Ions: Molecular Dynamics Study J. W. Kang;H. J. Hwang
  19. J. Phys. Soc. Japan v.73 no.4 Fullerene shuttle memory device : classical moleular dynamics study J. W. Kang;H. J. Hwang https://doi.org/10.1143/JPSJ.73.1077
  20. Physica E v.23 A bucky shuttle three-terminal switching device : classical molecular dynamics study J. W. Kang;H. J. Hwang https://doi.org/10.1016/j.physe.2003.11.271
  21. Journal of Computational and Theoretical Nanoscience Fullerene Shuttle Memoty Device based on Nanopeapod : Classical Moleculat Dynamics Study J. W. Kang;W. Y. Choi;H. J. Hwang
  22. Phys. Rev. Lett. v.88 Microscopic formation mechanism of nanotube peapods S. Berer;Y. K. Kwon;D. Tomanek https://doi.org/10.1103/PhysRevLett.88.185502
  23. Phys. Rev. B. v.38 Empirical interatomic potential for silicon with improved elastic properties J. Tersoff https://doi.org/10.1103/PhysRevB.38.9902
  24. Phys. Rev. B. v.42 Empirical potential for hydrocarbons for use in simulation the chemical vapor deposition of diamond films Donald W. Brenner https://doi.org/10.1103/PhysRevB.42.9458
  25. Nanotechnology v.10 Molecular dynamics simulations of the filling and decorating of carbon nanotubules Z. Mao;A. Garg;S. B. Sinnott https://doi.org/10.1088/0957-4484/10/3/309
  26. Phys. Rev. Lett. v.86 Energetics and electronic structures of encapsulated $C_{60}$ in a carbon nanotube S. Okada;S. Saito;A. Oshiyama https://doi.org/10.1103/PhysRevLett.86.3835
  27. Phys. Rev. Lett. v.90 Interaction of $C_{60}$ with carbon nanotubes and graphite H. Ulbricht;G. Moos;T. Hertel https://doi.org/10.1103/PhysRevLett.90.095501
  28. Phys. Rev. B. v.62 Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential L. A. Girifalco;M. Hodak;R. L. Lee https://doi.org/10.1103/PhysRevLett.90.095501
  29. J. Phys. Chem.B. v.105 Mechanics of $C_{60}$ in nanotubes D. Qian;W. K. Liu;R. S. Ruoff https://doi.org/10.1103/PhysRevB.62.13104
  30. Mater. Sci. Eng. C v.15 Atomistic study of interaction zone at copper-carbon interfaces S. Dorfman;K. C. Mundim;D. Fuks;A. Berner;D. E. Ellis;J. Van Humbeeck https://doi.org/10.1021/jp0120108
  31. Phys. Rev. B. v.69 Rotation, translation, charge transfer, and electronic structure of $C_{60}$ on Su(111) surface L. L. Wang;H. P. Cheng https://doi.org/10.1016/S0928-4931(01)00308-3
  32. Surf. Sci. v.515 Predicting trends in rate parameters for self-diffusion on FCC metal surfaces P. M. Afrawal;B. M. Rice;D. L.Thompson https://doi.org/10.1016/S0039-6028(02)01916-7
  33. Computer Simulation of Liquids M. P. Allen;D. J. Tildesley https://doi.org/10.1103/PhysRevB.69.045404
  34. Phys. Rev. Lett. v.90 Direct imaging of $Sc_2@C_{84}$ molecules encapsulated inside single-wall carbon nanotubes by high resolution electron microscopy with atomic sensitivity K.Suenage;T.Okazaki;S.R.Wang;S.Bandow;H.Shinohara;S.Iijima https://doi.org/10.1016/S0039-6028(02)01916-7
  35. M. P. Allen and D. J. Tildesley, "Computer Simulation of Liquids", Oxford, Clarendon, 1987.
  36. Phys. Rev. Lett. v.85 One-dimensional mMetallofullerene crystal generated inside single-walled carbon nNanotubes K. Hirahara;K. Suenage;S. Bandow;H. Kato;T. Okazaki;H. Shinohara;S. Iijima https://doi.org/10.1103/PhysRevLett.85.5384
  37. Nature v.415 Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes J. Lee;H. Kim;S. J. Kahng;G. Kim;Y. W. Son;J. Ihm;H. Kato;Z. W. Wang;T. Okazako;H. Shinohata;Y. Kuk
  38. Phys. Rev. Lett. v.91 Specific raman signatures of a dimetallofullerene peapod A. Debarre;R. Jaffiol;C. Julien;D. Nutarelli;A. Richard;P. Tchenio https://doi.org/10.1103/PhysRevLett.90.055506
  39. J. Phys. Chem. v.96 Interactions between fullerene ($C_{60}$) and endohedral alkali atoms B. I. Dunlap;J. L. Ballester;P. P. Schmidt https://doi.org/10.1103/PhysRevLett.85.5384
  40. Adv. Phys. v.51 Intercalation compounds of graphite M. S. Dresselhaus;G. Dresselhaus https://doi.org/10.1038/4151005a
  41. Phys. Rev. B. v.53 The oretical study of the binding of Na clusters encapsulated in the $C_{240}$ fullerene L. M. Cabrera-Trujillo;J. A. Alonso;M. P. Iniguez;M. J. Lopez;A. Rubio https://doi.org/10.1103/PhysRevB.53.16059
  42. A. Debarre, R. Jaffiol, C. Julien, D. Nutarelli, A. Richard, and P. Tchenio, "Specific raman signatures of a dimetallofullerene peapod", Phys. Rev. Lett., Vol. 91, p. 085501, 2003. https://doi.org/10.1103/PhysRevLett.91.085501
  43. B. I. Dunlap, J. L. Ballester, and P. P. Schmidt, "Interactions between fullerene ($C_{60}$) and endohedral alkali atoms", J Phys. Chem., Vol. 96, p. 9781, 1992. https://doi.org/10.1021/j100203a038
  44. Chem. Phys. Lett. v.221 How free are encapsulated atoms in $C_{60}$? Y. S. Li;D. Tomanek https://doi.org/10.1080/00018730110113644
  45. Phys. Rev. B v.65 Van der Waals binding energies in graphitic structures Girifalco, L. A.;Hodak, M. https://doi.org/10.1103/PhysRevB.53.16059
  46. Handbook of Nanoscience, Engineering, and Technology W. A. Goddard Ⅲ;D. W. Brenner;S. E. Lyshevski;G. J. Iagrate
  47. Chem. Phys. Lett. v.265 An electromechanical amplifier using a single molecule C. Jachim;J. K. Gimzewski https://doi.org/10.1016/S0009-2614(97)00014-6
  48. Phys. Rev. B v.58 Physical principles of the single-$C_{60}$ transistor effect C. Jachim;J. K. Gimzewski;H. Tang https://doi.org/10.1016/0009-2614(94)00297-5
  49. J. Phys. : Condens. Matter v.11 Conductance manipulation at the molecular level M. Paulsson;S. Stafstrom https://doi.org/10.1103/PhysRevB.65.125404
  50. Phys. Rev. B v.63 Ab initio modeling of open systems : Charge transfer, electron conduction, and molecular switching of a $C_{60}$ device J. Taylor;H. Guo; J.Wang https://doi.org/10.1103/PhysRevB.63.121104
  51. Nanotechnology v.12 Electronic transport througy $C_{60}$ molecules J. J. Palacios;A. J. Perez-Jimenez;E. Louis;J. A. Verges https://doi.org/10.1016/S0009-2614(97)00014-6
  52. Nature v.407 Nanomechanical oscillations in a single-$C_{60}$ transistor H. Park;J. Park;A. Lim;E. Anderson;A. Alivisatos;P. McEuen https://doi.org/10.1103/PhysRevB.58.16407
  53. Nano Lett. v.4 The Kondo Effect in $C_{60}$ single-molecule transistors L. H. Yu;D. Natelson https://doi.org/10.1088/0953-8984/11/17/313
  54. Thin Solid Films v.438 Wiring up single molecules J. Park;A. Pasupathy;J. Goldmith;A. Soldatov;C. Chang;Y. Yaish;J. Sethna;H. Abruna;D. Ralph;P. McEuen
  55. Phys. Rev. B v.65 Theory of an all-carbon molecular switch R. Gutierrez;G. Fagas;G. Cuniberti;F. Grossmann;R. Schmidt;K. Richter https://doi.org/10.1088/0957-4484/12/2/318
  56. Physica E v.12 Fullerene based devices for molecular electronics G. Cuniberti;R. Gutierrez;G. Fagas;F. Grossmann;K. Richter;R. Schmidt https://doi.org/10.1038/35024031
  57. Science v.300 Packing $C_{60}$ in boron nitride nanotubes W. Mickelson;S. Aloni;W. Q. Han;J. Cumings;A. Zettl https://doi.org/10.1021/nl034893f
  58. J. Park, A. Pasupathy, J. Goldsmith, A. Soldatov, C. Chang, Y. Yaish, J. Sethna, H. Abruna, D. Ralph, P McEuen. "Wiring up single molecules", Thin Solid Films, Vol. 438, p. 457, 2003. https://doi.org/10.1016/S0040-6090(03)00805-8
  59. R. Gutierrez, G. Fagas, G. Cuniberti, F. Grossmann, R. Schmidt. and K. Richter, "Theory of an all-carbon molecular switch", Phys. Rev. B, Vol. 65, p. 113410, 2002. https://doi.org/10.1103/PhysRevB.65.113410
  60. G. Cuniberti, R. Gutierrez, G. Fagas, F. Grossmann, K. Richter, and R. Schmidt, "Fullerene based devices for molecular electronics", Physica E, Vol. 12, p. 749, 2002. https://doi.org/10.1016/S1386-9477(01)00469-6
  61. W. Mickelson, S. Aloni, W. Q. Han, J. Cumings, and A. Zettl. "Packing $C_{60}$ in boron nitride nanotubes", Science, Vol. 300, p. 467, 2003. https://doi.org/10.1126/science.1082346