• Published : 2004.05.01


In the present paper, we treat an infinite series ($\alpha$, $\beta$)-metric L =$\beta$$^2$/($\beta$-$\alpha$). First, we find the conditions that a Finsler metric F$^{n}$ with the metric above be a Berwald space, a Douglas space, and a projectively flat Finsler space, respectively. Next, we investigate the condition that a two-dimensional Finsler space with the metric above be a Landsbeg space. Then the differential equations of the geodesics are also discussed.


  1. Rep. Fac. Sci. Kagoshima Univ.(Math. Phys. Chem.) v.23 On Matsumoto's Finsler space with time measure T.Aikou;M.Hashiguchi;K.Yamauchi
  2. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology P.L.Antonelli;R.S.Ingarden;M.Matsumoto
  3. Publ. Math. Debrecen v.48 Reduction theorems of certain Landsberg spaces to Berwald spaces S.Bacso;M.Matsumoto
  4. Publ. Math. Debrecen v.51 On Finsler spaces of Douglas type. A generalization to the notion of Berwald space S.Bacso;M.Matsumoto
  5. Tensor, N.S. v.55 Projective changes between Finsler spaces with (α,β)-metric S.Bacso;M.Matsumoto
  6. J. Korean Math. Soc. v.10 On Landsberg spaces of two dimensions with(α,β)-metric M.Hashiguchi;S.Hojo;M.Matsumoto
  7. Tensor, N.S. v.57 Landsberg spaces of dimension two with(α,β)-metric M.Hashiguchi;S.Hojo;M.Matsumoto
  8. J. Hokkaido Univ. Eduction(Sect.Ⅱ A 46(1995)) On Finsler spaces with(α,β)-metric. Regularity, geodesics and main scalars N.Kitayama;M.Azuma;M.Mausumoto
  9. Foundations of Finsler Geometry and Special Finsler Spaces M.Matsumoto
  10. Rep. Math. Phys. v.28 Randers spaces of constant curvature M.Matsumoto
  11. Tensor, N.S. v.50 The Berwald connection of a Finsler space with an(α,β)-metric M.Matsumoto
  12. Rep. Math. Phys. v.30 Projectively flat Finsler spaces with(α,β)-metric M.Matsumoto
  13. Tensor, N.S. v.50 A special class of locally Minkowski spaces with(α,β)-metric and conformally flat Kropina spaces M.Matsumoto
  14. Rep. Math. Phys. v.31 Theory of Finsler spaces with(α,β)-metric M.Matsumoto
  15. Math. Comput. Modelling v.20 Geodesics of two-dimensional Finsler spaces M.Matsumoto
  16. Tensor, N.S. v.60 Finsler spaces with(α,β)-metric of Douglas type M.Matsumoto
  17. Roumaine Math. Pures Appl. v.42 Equations of geodesics in two-dimensional Finsler spaces with(α,β)-metric M.Matsumoto;H.S.Park
  18. Commun. Korean Math. Soc. v.14 no.2 On projectively flat Finsler spaces with(α,β)-metric H.S.Park;I.Y.Lee
  19. J. Korean Math. Soc. v.37 no.1 On the Landsberg spaces of diemesion two with a special(α,β)-metric H.S.Park;I.Y.Lee
  20. Indian J. pure and appl. Math. v.34 no.1 Finsler space with the general approximate Matsumoto metric H.S.Park;I.Y.Lee;C.K.Park
  21. Tensor. N.S. v.31 On Finsler spaces with Rander's metric C.Shibata;H.Shimada;M.Azuma;H.Yasuda
  22. Rep. Math. Phys. v.11 On Randers spaces of scalar curvature H.Yasuda;H.Shimada

Cited by

  1. RETRACTED: On two subclasses of -metrics being projectively related vol.62, pp.2, 2012,
  2. Projectively Flat Finsler Space of Douglas Type with Weakly-Berwald (α,β)-Metric vol.18, 2017,