• 발행 : 2004.05.01


In this paper we obtained the following: Let H. be a Hilbert space and (equation omitted) be a subspace lattice on H. Let X and Y be operators acting on H. If the range of X is dense in H, then the following are equivalent: (1) there exists an operator A in Alg(equation omitted) such that AX = Y, (2) sup (equation omitted) Moreover, if condition (2) holds, we may choose the operator A such that ∥A∥ = K.


  1. Illinois J. Math. v.33 no.4 Hibert-Schmidt Interpolation in CSL-Algebras A.Hopenwasser
  2. Indiana Univ. Math. J. v.29 The equation Tx=y in a reflexive operator algebra A.Hopenwasser
  3. Proc. London Math. Soc. v.19 no.3 Some properties of nest algebras E.C.Lance
  4. Interpolation problems in AlgL Y.S.Jo;J.H.Kang
  5. Math. Proc. Camb. Phil. Soc. v.111 Interpolation problems for ideals in nest algebras M.Anoussis;E.Katsoulis;R.L.Moore;T.T.Trent
  6. J. Math. Anal. Appl. v.140 Compact causal data interpolation N.Munch
  7. Pro. Nat. Acad. Sci. U.S.A. Irreducible Operator Algebras R.Kadison
  8. Proc. Amer. Math. Soc. v.128 no.3 Linear equations in subspaces of operators R.Moore;T.T.Trent
  9. J. Operator Theory v.29 Interpolation in nest algebras and applications to operator Corona Theorems E.Katsoulis;R.L.Moore;T.T.Trent
  10. Proc. Amer. Math. Soc. v.17 On majorization, factorization, and range inclusion of operators of Hilbert space R.G.Douglas

피인용 문헌

  1. SOLVING OPERATOR EQUATIONS Ax = Y AND Ax = y IN ALGL vol.33, pp.3_4, 2015,
  2. COMPACT INTERPOLATION ON AX = Y IN ALG𝓛 vol.32, pp.3_4, 2014,
  3. NORMAL INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$ vol.30, pp.2, 2008,