DOI QR코드

DOI QR Code

ON THE GENUS OF Sm × Sn

  • Cristofori, Paola
  • Published : 2004.05.01

Abstract

By using a recursive algorithm, we construct edge-coloured graphs representing products of spheres and consequently we give upper bounds for the regular genus of ${\mathbb{S}}^{m}\;\times\;{\mathbb{S}}^{n}$, for each m, n > 0.

Keywords

regular genus;product of spheres

References

  1. Proc. Amer. Math. Soc. v.120 no.1 Gagliardi, Classifying PL 5-manifolds up to regular genus seven M.R.Casali;C.Gagliardi https://doi.org/10.2307/2160196
  2. Foundations of Algebraic Topology S.Eilemberg;N.Steenrod
  3. Aequationes Math. v.31 A graph-theoretical representationof PL-manifolds - A survey on crystallizations M.Ferri;C.Gagliardi;L.Grasselli https://doi.org/10.1007/BF02188181
  4. J. Graph Theory v.17 no.5 Representing products of polyhedra by products of edge-coloured graphs C.Gagliardi;L.Grasselli https://doi.org/10.1002/jgt.3190170502
  5. Boll. Unione Mat. Ital. v.13-B Una rappresentazione delle n-varieta topologiche triangolabili mediante grafi(n+1)-colorati M.Ferri
  6. Geom. Dedicata v.11 Regular imbeddings of edgd-coloured graphs C.Gagliardi
  7. Proc. Amer. Math. Soc. v.81 Extending the concept of genus to dimension n C.Gagliardi https://doi.org/10.2307/2043490
  8. Atti Sem. Mat. Fis. Univ. Modena v.23 Sulla struttura topologica delle varieta compatte M.Pezzana
  9. Algebraic Topology E.H.Spanier

Cited by

  1. Genus-minimal crystallizations of PL 4-manifolds 2017, https://doi.org/10.1007/s13366-017-0334-x
  2. REGULAR GENUS AND PRODUCTS OF SPHERES vol.47, pp.5, 2010, https://doi.org/10.4134/JKMS.2010.47.5.925
  3. Face vectors of simplicial cell decompositions of manifolds vol.195, pp.1, 2013, https://doi.org/10.1007/s11856-012-0127-8
  4. Regular genus and gem-complexity of some mapping tori pp.1579-1505, 2019, https://doi.org/10.1007/s13398-019-00634-3