Microwave Assisted Rapid Synthesis of Novel Optically Active Poly(amide-imide)s Based on N-Trimellitylimido-L-Leucine Diacid Chloride and Hydantoin Derivatives

  • Faghihi, Khalil (Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Faculty of Science Arak University)
  • Published : 2004.06.01


We have developed facile and rapid polycondensation reactions of N-trimellitylimido-L-leucine diacid chloride 1 with eight different derivatives of hydantoin compounds 2a-h, in the presence of a small amount of a polar organic medium, such as Ο-cresol, by using a domestic microwave oven. The polycondensation reactions proceeded rapidly-they were complete within 7-9 min-to produce a series of novel optically active poly(amide-imide)s (3a-h) in high yield with inherent viscosities of 0.33-0.51 dL/g. We characterized the resulting poly(amide-imide)s by elemental analysis, thermal gravimetric analysis (DSC, TGA, and DTG), and FTIR spectroscopy, and by measuring their viscosities, specific rotations, and solubilities. All of the polymers were soluble at room temperature in polar solvents such as N ,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, tetrahydrofuran, and N-methyl-2-pyrrolidone.


  1. Green Chem. v.1 S. R. Varma https://doi.org/10.1039/a808223e
  2. J. Org. Chem. v.63 Y. D. Gong;H. Y. Sohn;M. J. Kurth https://doi.org/10.1021/jo980419w
  3. Molecules v.4 D. Bogdal https://doi.org/10.3390/41100333
  4. Org. Lett. v.1 S. R. Varma;D. Kumar https://doi.org/10.1021/ol990629a
  5. J. Agric. Food Chem. v.45 H. M. Jr. Pylypiw;T. L. Arsenault;C. M. Thetford;M. J. I. Mattina https://doi.org/10.1021/jf970227m
  6. J. Agric. Food Chem. v.45 V. A. Yaylayan; G. Matni https://doi.org/10.1021/jf960395z
  7. Anal. Chem. v.69 M. J. Vazques;A. M. Carro;R. A. Lorenzo;R. Cela https://doi.org/10.1021/ac960513h
  8. Polymer v.26 H. Jullien;H. Valot https://doi.org/10.1016/0032-3861(85)90149-1
  9. Eur. Polym. J. v.23 B. Silinski;C. Kuzmycz;A. Gourdenne https://doi.org/10.1016/0014-3057(87)90147-9
  10. Polym. J. v.28 Y. Imai;H. Nemoto;S. Watanabe;M. A. Kakimoto https://doi.org/10.1295/polymj.28.256
  11. J. of Polym. Sci., Part A, Polym. Chem. v.36 Y. Liu;X. D. Sun;X. Q. Xie;D. A. Scola https://doi.org/10.1002/(SICI)1099-0518(199810)36:14<2653::AID-POLA25>3.0.CO;2-G
  12. Polym. Int. v.49 S. E. Mallakpour;A. R. Hajipour;Kh. Faghihi https://doi.org/10.1002/1097-0126(200011)49:11<1383::AID-PI502>3.0.CO;2-D
  13. Eur. Polym. J. v.37 S. E. Mallakpour;A. R. Hajipour;Kh. Faghihi https://doi.org/10.1016/S0014-3057(00)00097-5
  14. J. Appl. Polm. Sci. v.80 S. E. Mallakpour;A. R. Hajipour;Kh. Faghihi;N. Foroughifar;J. Bagheri https://doi.org/10.1002/app.1348
  15. Eur. Polym. J. v.39 Kh. Faghihi;Kh. Zamani;A. Mirsamie;M. R. Sangi https://doi.org/10.1016/S0014-3057(02)00200-8
  16. Polym. Int. Kh. Faghihi;Kh. Zamani;S. Mallakpour
  17. J. Appl. Polym. Sci. Kh. Faghihi;Kh. Zamani;S. Mallakpour;A. Mirsamie
  18. Chem. Rev. v.94 Y. Okamoto;T. Nakano https://doi.org/10.1021/cr00026a004
  19. Top Stereochem. v.17 M. Farina https://doi.org/10.1002/9780470147269.ch1
  20. Encycl. Polym. Sci. Engng. v.10 F. Ciardelli
  21. Angew. Chem. Int. Ed. v.28 G. Wulff https://doi.org/10.1002/anie.198900211
  22. Recent Advances in Synthetic and Mechanistic Aspects of Polymerization M. Fontanille;A. Guyot
  23. Iranian. Polym. J. v.9 S. E. Mallakpour;H. A. Dabbagh;Kh. Faghihi
  24. Iranian. Polym. J. v.11 Kh. Faghihi;Kh. Zamani;S. Mallakpour
  25. Kirk-Othmer Encyclopedia of Chemical Technology(Thrid edition) v.12
  26. Eur. Polym. J. v.36 S. E. Mallakpour;A. R. Hajipour;R. Roohipour-fard https://doi.org/10.1016/S0014-3057(00)00018-5
  27. Iranian Polym. J. v.10 S. E. Mallakpour;A. R. Hajipour;R. Vahabi
  28. J. Comb. Chem. v.4 M. Lamothe;M. Lannuzel;M. Perez https://doi.org/10.1021/cc0100520