Microwave Dielectric Properties of (1-X)$Mg_4Ta_2O_{9-x}TiO_2$(X=0, 0.3, 0.4) Ceramics with Sintering Temperature

소결온도에 따른 (1-x)$Mg_4Ta_2O_{9-x}TiO_2$(X=0, 0.3, 0.4) 세라믹스의 마이크로파 유전특성

  • 김재식 (광운대학 전자재료공학과) ;
  • 최의선 (광운대학 전자재료공학과) ;
  • 이문기 (광운대학 전자재료공학과) ;
  • 이영희 (광운대학 전자재료공학과)
  • Published : 2004.02.01

Abstract

The microwave dielectric properties and microstructure of the (1-x)$Mg_4Ta_2O_{9-x}TiO_2$(X=0, 0.3, 0.4) ceramic were, investigated. The specimens were prepared by the conventional mixed oxide method with sintering temperature of $1350^{\circ}C$$1425^{\circ}C$. According to the XRD patterns, the (1-x)$Mg_4Ta_2O_{9-x}TiO_2$(X=0, 0.3, 0.4) ceramics have the $Mg_4Ta_2O_{9}$ phase(hexagonal). The dielectric constant($\varepsilon$$_{\gamma}$) and density increased with sintering temperature and mole fraction of x. To improve the quality factor and the temperature coefficient of resonant frequency, TiO$_2$($\varepsilon_{r}$=100, $Q{\times}f_{r}$=40,000GHz, $\tau$$_{f}$=+450 ppm/$^{\circ}C$) was added in $Mg_4Ta_2O_{9}$ ceramics. In the case of the $0.7Mg_4Ta_2O_{9}$-$0.3TiO_2$ and the $0.6Mg_4Ta_2O_{9}$-$0.4TiO_2$ceramics sintered at $1400^{\circ}C$ for 5hr., the microwave dielectric properties were $\varepsilon$$_{\gamma}$=11.72, $Q{\times}f_{r}$=126,419GHz, $\tau_{f}$=-31.82 ppm/$^{\circ}C$ and $\varepsilon_{r}$=12.19, $Q{\times}f_{r}$=109,411GHZ, $\tau$$_{f}$= -17.21 ppm/$^{\circ}C$, respectively.

Keywords

$Q\times\textrm{f}$;$Mg_4Ta_2O_{9}$;$TiO_2$;sintering temperature

References

  1. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, 'Introduction to Ceramics', John Wiely & Sons, Second edition, pp.937-945
  2. H. Tamura, 'Microwave Loss Quality of (Zr0.8Sn0.2) TiO4 Ceramics', Am. Ceram. Soc. Bull., 73(10), pp.92-95, 1995
  3. 정성경, 김봉철, 장세홍, 김정주, 'TiO2 첨가에 따른 ITO 세라믹스의 소결 거동', J. Kor. Ceram. Soc. 35, [4] pp.347-54, 1998
  4. C. Herring, 'Effect of Change of Scale on Sintering Phenomena', J. Appl. Phys., 21(3), pp.301-303, 1950 https://doi.org/10.1063/1.1699658
  5. R. L. Coble, 'Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models', J. Appl. Phys., 32(5), pp.787-792, 1961 https://doi.org/10.1063/1.1736107
  6. K. Wakino, 'Ferroelectrics', 91, pp.61, 1989
  7. S. H. Ra, P. P. Phule, J. Mater. Res. 14, pp.4259, 1999 https://doi.org/10.1557/JMR.1999.0577
  8. B. W. Hakki, 'A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range', IRE Trans. on Microwave Theory and Techniques, Vol. MTT-24, No.10, 1960
  9. Y.Kobayashi, 'Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method', IEEE Trans. on Microwave Theory and Techniques, Vol. MTT-33, No.&, 1985
  10. 최의선, 이문기, 류기원, 이영희, '소결온도에 따른 MgTiO3-SrTiO3 세라믹스의 구조적 특성', 대한전기학회 추계 학술대회, pp.953-955, 1999
  11. 최의선, 정장호, 류기원, 이영희, '소결온도와 Sr몰비에 따른 Mg1-xSrxTiO3 세라믹스의 구조 및 마이크로 파유전특성', 대한전기학회논문지, Vol. 50, No.5, pp.226-231
  12. 최의선, 이문기, 류기원, 배선기, 이영희, '소결온도에 따른 0.9MgTiO3-0.1SrTiO3 세라믹스의 구조 및 마이크로 파유전특성', 대한전기학회논문지, Vol. 49, No.5, pp.294-298, 2000
  13. K. Wakino, T. Minai and H. Ichimura, J. Am. Ceram. Soc. 67, 278, 1984 https://doi.org/10.1111/j.1151-2916.1984.tb18847.x
  14. Y. Konishi, Proc. IEEE 79, pp.725, 1991 https://doi.org/10.1109/5.90153
  15. H. Sata, K. Aynsawa, M. Sato, K. Kawamura, I. Kawakami and K. Nihei, Proc. 3rd IEE IEMT Symp. pp.149, 1987
  16. E. Nagata, J. Tanaka, M. Tsutumi and E. Bannai, 'Distribution of Calcium Ion in the Crystal of MgTiO3-CaTiO3 System', Bull. Chem. Soc. Jpn., 56, pp.3173-3174, 1983 https://doi.org/10.1246/bcsj.56.3173
  17. D. Kolar and D. Suvorov, 'High Permittivity Microwave Ceramics', Eur. J. Solid State Inorg. Chem., 32, pp.751-760, 1995
  18. N. Negas, G. Yeager, S.Bell, and R. Amren, 'Chemistry and Properties of Temperature Compensated Microwave Dielectric', NIST spec. publ. 804, in Chemistry of Electronic Ceramic Materials, pp.21, 1991