Effects of Amino Acids Fermentation By-product on Fermentation Quality and In situ Rumen Degradability of Italian Ryegrass (Lolium multiflorum) Silage

  • Yimiti, W. (Faculty of Bioresources, Mie University) ;
  • Yahaya, M.S. (Faculty of Bioresources, Mie University) ;
  • Hiraoka, H. (Mie Science and Technology Promotion Centre) ;
  • Yamamoto, Y. (Mie Science and Technology Promotion Centre) ;
  • Inui, K. (Mie Science and Technology Promotion Centre) ;
  • Takeda, M. (Ajinomoto Co., INC, International Production & Technology Center) ;
  • Tsukahara, A. (Ajinomoto Co., INC, International Production & Technology Center) ;
  • Goto, M. (Faculty of Bioresources, Mie University)
  • Received : 2003.07.31
  • Accepted : 2004.01.15
  • Published : 2004.05.01


The experiment of silage for preservation of fresh Italian ryegrass (Lolium multiflorum) was carried out to examine whether the fermentation quality and microbial degradation in the rumen can be altered by the treatment of amino acids fermentation byproduct (AFB). The plant was ensiled for 40 days with 4 treatments of different ratios of AFB and sugarcane molasses (SCM) mixture. The treatment 2 (T2, AFB:SCM=100:0) and treatment 3 (T3, AFB:SCM=40:60) silages showed higher (p<0.05) concentrations of lactic acids, lower (p<0.05) pH and dry matter (DM) losses than the Control (T1, none additive) and treatment (T4, AFB:SCM=0:100) silages. The treatments 2 and 3 contained higher (p<0.05) DM and crude protein contents in silages compared to treatments 1 and 4 silages. The NDF, ADF and cellulose contents were also lower (p<0.05) in T2, T3 and T4 silages than T1 silage and fresh material before ensiled. The in situ rumen DM, NDF, ADF, hemicellulose and cellulose degradability was also higher (p<0.05) in T2, T3 and T4 silages than T1 silage, while the highest improvement was achieved with addition of AFB:SCM at level of 40:60 at ensiling. The result in this study indicates that the addition of AFB and SCM additives improved the silage fermentation and cell wall degradability of Italian ryegrass silage.


  1. Chamberlain, A. T. and J. M. Wilkinson. 1996. The ideal silage. In (A. T. Chamberlain, J. M. Wilkinson) Feeding the Dairy Cow. Chamberlain Publication, Lincol, UK, pp. 28-30.
  2. Deriaz, R. E. 1961. Routine analysis of carbohydrates and lignin in herbage. J. Sci. Food Agric. 12:153-160.
  3. Goto, M., S. Karita, M. S. Yahaya, W. Kim, E. Nakayama and Y. Yamada. 2003a. Utilization of ruminal epithelial cells by Ruminococcus albus, with or without rumen protozoa, and its effect on bacterial growth. Asian-Aust. J. Anim. Sci. 16(1):44-49.
  4. Goto, M., H. D. Bae, M. S. Yahaya, S. Karita, W. Kim, J. Baah, K. Sugawara and K. J. Cheng. 2003b. Effects of surfactant Tween 80 on enzymatic accessibility and degradation of orchardgrass (Dactylis glomerata L.) at different growth stages. Asian-Aust. J. Anim. Sci. 16(1):83-87.
  5. Masuko, T., S. Okada, T. Uchimura and K. Awaya. 1992. Effects of inoculation with lactic acid bacterial culture at ensiling on the fermentative quality and flora of lactic acid bacteria of grass silage. J. Anim. Sci. Technol. 63:1182-1187.
  6. Mcdonald, P., A. R. Henderson and S. J. E. Heron. 1991. Biochemistry of silage In: 2nd Edition. Chamberlain Publication, Aberystwyth. pp. 9-340.
  7. Plane, M. J. and P. McDonald. 1966. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 17:264-268.
  8. Yahaya, M. S., M. Kawai, J. Takahashi and S. Matsuoka. 2002. The effect of different moisture contents at ensiling on silo degradation and digestibility of structural carbohydrates of orchardgrass. Anim. Feed Sci. Technol. 101:127-133.
  9. Dunny, E. A. 1993. Perspectives of cell wall biodegradation and animal aspects in plant cell wall utilization. In: (Ed. H. G. Jung, D. R. Buxton, R. D. Hatfield, J. Ralph), Forage Cell Wall Structure and Digestibility. USDA-ARS, Madison, pp. 73-88.
  10. Orskov, E. R., F. D. Hovell and F. Mould. 1980. The use of nylon bag technique for evaluation of feedstuffs. Trop. Anim. Prod. 46:29-34.
  11. Morrison, I. M. 1979. Changes in the cell wall components of laboratory silages and the effect of various additives on these changes. J. Agric. Sci. Camb. 93:190-196.
  12. Goto, M., Y. Yokoe, K. Takabe, S. Nisikawa and O. Morita. 1993. Effects of gaseous ammonia on chemical and structural features of cell walls in spring barley straw. Anim. Feed Sci. Technol. 40:207-221.
  13. S. Matsuoka. 2001. Effect of length of ensiling on silo degradation and digestibility of structural carbohydrates of lucerne and orchardgrass. Anim. Feed Sci. Technol. 92:141-148.
  14. Duncan, D. B. 1955. Multiple range test and multiple F. test Biometrics 11:1-42.
  15. Yimiti, W., H. Hiraika, Y. Maekawa, M. S. Yahaya, S. Karita and M. Goto. 2003. Effects of amino acids fermentation byproduct on the growth of pure cultures of silage-associated microorganisms and fermentation quality of whole barley crop silages (submitted to Anim. Feed Sci. Technol.).
  16. Orskov, E. R., G. W. Reid, S. M. Holland, C. A. G. Tait and N. H. Lee. 1983. The feeding value for ruminant of straws and wholecrop barley and oats treated with anhydrous or aqueous ammonia or urea. Anim. Feed Sci. Technol. 8:247-257.
  17. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 55:805-810.
  18. AOAC. 1990. Assc. Of official Anal. Chem., 15th Edition. Washingtop, DC. pp. 69-89.
  19. Cao, Li-man, M. Goto and M. Ohshima. 2002. Variation in the fermentation characteristics of alfalfa silage of different harvest time as treated with fermented juice of epiphytic lactic acid bacteria. Grassl. Forage Sci. 47:583-587.
  20. Snedecor, G. W. and W. G. Cochran. 1980. Two ways classifications and analysis of variance In: Statistical methods (Ed. G. W. Snedecor and W. G. Cochran). 7th ed. Iowal state University press, pp. 255-269.
  21. Micheal, K. W. 1984. Ensiling process. In: (I. L. Allen, I. M. Rechard). Silage fermentation, Marcel Dekker, New York. pp. 1-22.
  22. Conway, E. J. and E. O'Malley. 1942. Microdiffusion methods: ammonia and urea uisng buffer absorbents (revised methods for ranges greater than 10 (g N). J. Biochem. 36:655-661.
  23. Agriculture, Forestry and Fisheries Research Council Secretariat (MAFF). 1999. Chemical composition of amino acid fermentation byproducts In: Standard Tables of Feed Composition in Japan, Central association of Livestock Industry, p.179.

Cited by

  1. Glutamate Fermentation By-product Activates Plant Defence Responses and Confers Resistance Against Pathogen Infection vol.158, pp.10, 2010,
  2. Effects of adding a monosodium glutamate fermented by-product on the fermentation quality of whole crop rice (Oryza sativa L.) silage, digestibility and ruminal fermentation in beef cattle vol.57, pp.2, 2011,
  3. An attempt towards standardization of the production process of dawadawan botso (a fermented condiment) vol.13, pp.35, 2014,
  4. Effects of phenylalanine fermentation byproduct and sugarcane molasses on fermentation quality and rumen degradation of whole crop barley (Hordeum vulgare L.) silage in situ vol.52, pp.2, 2006,