Effect of Setting Temperatures and Time on the Gelation Properties (Suwari and Modori Phenomena) of Surimi from Mechanically Deboned Chicken Meat

  • Lee, Sung Ki (Department of Food Science and Technology in Animal Resources, Kangwon National University) ;
  • Min, Byung Jin (Department of Food Science and Human Nutrition, Clemson University)
  • Received : 2004.02.20
  • Accepted : 2004.07.28
  • Published : 2004.12.01


This study was carried out to investigate gel forming and degradation properties (suwari and modori phenomena) of chicken surimi from mechanically deboned chicken meat (MDCM) at various setting temperatures and time. Chicken surimi was manufactured by a continuous process including chopping of MDCM, washing with 5% NaCl solution or pure water, standing, straining and centrifuging etc. Total process of washing for the MDCM from chopping to centrifuging was repeated over 3 cycles. Gel from prepared surimi were formed at $90^{\circ}C$ for 30 min after various setting treatments. The textural properties of gels were measured at the temperature ranges of low (10$^{\circ}C$), medium (25$^{\circ}C$ and $30^{\circ}C$) and high (45 to 70$^{\circ}C$). The compressive force (CF), hardness and fracturability of surimi gel at 10$^{\circ}C$ increased as setting time increased, and showed the highest value at 30 h of setting time. The CF and hardness of chicken surimi gel at 25$^{\circ}C$ and 30$^{\circ}C$ showed the highest values at 10 h of setting time. Most of gel strengths including CF, and texture profile analysis (TPA) values showed the highest levels in the range 47.5 to 52.5$^{\circ}C$ (p<0.05). The gel strength at 60$^{\circ}C$ increased slightly at 30 min, but then continued to decrease with longer setting times. There was no increase of gel strength at $70^{\circ}C$, but only a continuous decrease over setting time. In conclusion, suwari (gel setting) and modori (gel degradation) phenomena occur during the gel formation of surimi from MDCM. The temperature range in chicken surimi was 47.5 to 52.5$^{\circ}C$ for suwari and 60 to 70$^{\circ}C$ for modori.


Supported by : Agriculture R & D Center


  1. Foegeding, E. A. 1987. Functional properties of turkey salt-soluble proteins. J. Food Sci. 52:1495-1499.
  2. Lan, Y. H., K. Novakofski, R. H. McCusker, M. S. Brewer, T. R. Carr and F. K. McKeith. 1995. Thermal gelation properties of protein fractions from pork and chicken breast muscles. J. Food Sci. 60:742-752.
  3. Lee, C. M. 1984. Surimi process technology. Food Technol. 38(11):69-80.
  4. Min, B. J. and S. K. Lee. 2004. Surimi quality from mechanically deboned chicken meat as affected by washing cycle, salt concentration, heating temperature and rate. Asian-Aust. J. Anim. Sci. 17:131-136.
  5. O'Neill, E., P. A. Morrisey and D. M. Mulvihill. 1993. Heat induced gelation of actomyosin. Meat Sci. 33:61-74.
  6. Park, J. W., J. Yongsawatdigul and T. M. Lin. 1994. Rheological behavior and potential cross-linking of pacific whiting (Merluccius productus) surimi gel. J. Food Sci. 59:773-776.
  7. SAS. 1993. SAS/STAT User's Guide: SAS Institute Inc., Cary, North Carolina.
  8. Niwa, E. 1992. Chemistry of surimi gelation. In Surimi Technology (Ed. T. C. Lanier and C. M. Lee). Marcel Dekker Inc., New York, USA, pp. 389-427.
  9. Shimizu, Y. 1990. Biochemical and functional properties of material fish. In: Engineered Seafood Including Surimi (Ed. R. E. Martin and R. L. Collette). Noyes Data Corporation, Park Ridge, NJ, pp. 143-161.
  10. Lou, X., C. Wang, Y. L. Xiong, B. Wang and S. D. Mims. 2000. Gelation characteristics of paddlefish (polyodon apathula) surimi under different heating conditions. J. Food Sci. 65:394-398.
  11. Alvarez, C., I. Couso and M. Tejada. 1999. Thermal gel degradation (Modori) in sardine surimi gels. J. Food Sci. 64:633-637.
  12. Mackie, I. M. 1992. Surimi from fish. In: The Chemistry of Muscle-Based Foods (Ed. D. A. Ledward, D. E. Johnston and M. K. Knight). The Royal Society of Chemistry, Cambridge, pp. 207-221.
  13. Montejano, J. G., D. D. Hamann and T. C. Lanier. 1984. Thermally induced gelation of selected comminuted muscle systems: Rheological changes during processing, final strength and microstructure. J. Food Sci. 49:1496-1505.
  14. Chan, J. K., T. A. Gill, J. W. Thompson and D. S. Singer. 1995. Herring surimi during low temperature setting, physicochemical and textural properties. J. Food Sci. 60:1248-1253.
  15. Smyth, A. B. and E. O’Neill. 1997. Heat-induced gelation properties of surimi from mechanically separated chicken. J. Food Sci. 62:326-330.
  16. Lanier, T. C. and C. M. Lee. 1992. Surimi Technology. Marcel Dekker Inc., New York, USA.
  17. Kim, S. H., J. A. Carpenter, T. C. Lanier and L. Wicker. 1993. Setting response of Alaska Pollock surimi compared with beef myofibrils. J. Food Sci. 58:531-534.
  18. Foegeding, E. A., C. J. Brekke and Y. L. Xiong. 1991. Gelation of myofibrillar proteins. In: Interactions of Food Proteins (Ed. N. Parris and R. Barford). Washington, DC, American Chemical Society, p. 257.

Cited by

  1. Factors influencing meat emulsion properties and product texture: A review vol.57, pp.10, 2017,