Effects of Salmonella typhymurium Lipopolysaccharide Challenge on the Performance, Immune Responses and Zinc Metabolism of Laying Hens Supplemented with Two Zinc Sources

  • Cheng, Tingshui (College of Animal Science and Technology, China Agricultural University) ;
  • Guo, Yuming (College of Animal Science and Technology, China Agricultural University)
  • Received : 2004.03.25
  • Accepted : 2004.06.21
  • Published : 2004.12.01


The study was conducted to determine the effect of Salmonella typhymurium lipopolysaccharide (LPS) challenge on egg-laying performance, inflammatory response, zinc metabolism in layer fed diets supplemented with organic or inorganic zinc since 3-wk-old. The three dietary treatments were corn-soybean meal basal diet without supplemental zinc or with supplemental zinc at 60 mg/kg zinc from $ZnSO_4$ or zinc amino acid complex (ZnAA). At the age of 58 wk-old, twelve hens from each dietary treatment were allotted into two sub-groups. On day 1, 3, 5, 7 of the $58^{th}$ week of age, six birds of one sub-group were injected intraperitoneally (i.p.) with 2 ml LPS (1.0 $\ell$/ml) or sterile saline. Neither zinc source ${\times}$ immune challenge interaction nor zinc source effect on egg production performance was observed (p>0.05), LPS-challenge decreased egg production (p<0.04) and increased percentage of cracked eggs (p <0.01). With LPS challenged, the fever response of hens fed ZnAA peaked and subsided earlier than in hens fed $ZnSO_4$ or basal diet. Serum IL-1$\beta$ at 3 h was higher (p<0.01), but lower (p<0.001) at 12 h post-challenge with LPS in hens fed ZnAA than $ZnSO_4$. In salinetreated groups, serum IL 1$\beta$ was higher in hens fed ZnAA than the basal diet at 3 h post-injection (p<0.01). LPS-challenged birds had lower serum zinc and higher zinc sequestered in liver and spleen (p<0.001). In saline-treated birds, there was no difference in zinc concentration of serum, liver and spleen among different dietary treatments (p>0.05). Supplementation of 60 mg/kg zinc from either ZnAA or $ZnSO_4$ significantly (p<0.05) elevated metallothionein (MT) concentration in liver and spleen. MT concentration in liver of birds fed ZnAA diet was higher than in those fed $ZnSO_4$ diet (p<0.05). The magnitude of increase of hepatic and splenic MT due to LPS challenge was higher by supplementation of ZnAA than $ZnSO_4$. The results suggest that zinc amino acid complex enhanceed MT synthesis and zinc sequestered in liver and spleen and increased the sensitivity to immune response due to LPS challenge.


Supported by : Zinpro Co. Ltd. in USA


  1. Cousin, R. J. 1985. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol. Rev. 65:238-309.
  2. Davis, S. R. and R. J. Cousins. 2000. Metallothionein expression in animals: A physiological perspective on function. J. Nutr. 130:1085-1088.
  3. de Boer, A. G. and D. D. Breimer. 1998. Cytokines and bloodbrain barrier permeability. Prog. Brain Res. 115:425-451.
  4. Dunnm, M. A. and R. J. Cousins. 1989. Kinetics of zinc metabolism in the rate: effect of dibutyryl cyclic AMP. Am. J. Physiol. 256, E420-E430.
  5. Fraker, P. J., M. E. Gershwin, R. A. Good and A. Prasad. 1986. Interrelationships between zinc and immune function. Fed. Proc. 45:1474-1479.
  6. Kidd, M. T., M. A. Qureshi, P. R. Ferket and L. N. Thomas. 1994a. Blood clearance of escherichia coli and evaluation of mononuclear-phagocytic system as influenced by supplemental dietary zinc methionine in young turkeys. Poult. Sci. 73:1381-1389.
  7. Kidd, M. T., P. R. Ferket and M. A. Qureshi. 1996. Zinc metabolism with special reference to its role in immunity. World’s Poult. Sci. J. 52:309-324.
  8. Klasing, K. C. and R. E. Austic. 1984. Changes in protein degradation in chickens due to an inflammatory challenge. Proc. Soc. Exp. Biol. Med. 176:292-296.
  9. Klasing, K. C., D. E. Laurin, R. K. Peng and D. M. Fry. 1987. Immunologically mediated growth depression in chicks: Influence of feed intake, corticosterone, and interleukine-1. J. Nutr. 117:1629-1637.
  10. Spear, J. W. 1989. Zinc methionine for ruminant: relative bioavailability of zinc in lambs and effects on growth and performance of growing heifer. J. Anim. Sci. 67:835.
  11. Sugarman, B. 1983. Zinc and infection. Rev. Infect. Dis. 5:137-147.
  12. Verbanac, D., C. Milin, B. Radosevic-Stasic, Z. Trobonjaca, R. Domitrovic, J. Giacometti, M. Petkovic, M. Cuk, Z. Ciganj, J. Rupcic, and D. Rukavina. 1998. Tissue zinc dynamics during the immune reaction in mice. Bio. Trace Elem. Res. 65:97-108.
  13. Wedekind, K. J., A. E. Hortin and D. H. Baker. 1992. Methodology for assessing zinc bioavailability: efficacy estimates for zinc for zinc-methionine, zinc sulfate, and zinc oxide. J. Anim. Sci. 70:178-187.
  14. Cousins, R. J. and J. M. Hempe. 1990. Zinc, in Present Knowledge in Nutrition, (Ed. M. L. Brown), International Life Science Institute, Nutrition Foundation, Washington, DC. pp. 251-261.
  15. Cao, J., P. R. Henry, S. R. Davis, R. J. Cousin, R. D. Miles, R. C. Littell and C. B. Ammerman. 2002. Relative bioavailability of organic zinc sources based on tissue zinc and metallothionein in chicks fed conventional dietary zinc concentration. Anim. Feed Sci. and Technol. 101:161-170.
  16. Wellinghausen, N., H. Kirchner and L. Rink. 1997. The immunobiology of zinc. Immunol. Today 18:519-531.
  17. Cao Jia-yin, Luo Xu-gang, S. R. Davis, P. R. Henry, R. J. Cousin, R. D. Miles and C. B. Ammerman. 2003. Tissue zinc and metallothionein concentrations and Metallothionein gene expression as criteria for relative bioavailability assays of zinc sources in chicks. Chinese J. Anim. Vet. Sci. 34 (3):227-231.
  18. National Research Council. 1994. Nutrient Requirements of Poultry. $9^{th}$ ed. Washington, DC. National Academy Press.
  19. Tufft, L. S., C. F. Nockels and M. J. Fettman. 1988. Effects of escherichia coli on iron, copper, and zinc metabolism in chicks. Avian Diseases, 32:779-786.
  20. Cao, J., P. R. Henry, S. R. Davis, R. J. Cousin, R. D. Miles, R. C. Littell and C. B. Ammerman. 2002. Relative bioavailability of organic zinc sources based on tissue zinc and metallothionein in chicks fed conventional dietary zinc concentration. Anim. Feed Sci. and Technol. 101:161-170.
  21. Fleet, J. C., M. A. Qureshi, R. R. Dietert and C. C. McCormick. 1988. Tissue-specific accumulation of metallothionein in chickens as influenced by the route of zinc administration. J. Nutri. 118:176-182.
  22. Kidd, M. T., M. A. Quershi, P. R. Ferket and L. N. Thomas. 2000. Turkey hen Zinc source affects progeny immunity and disease resistance. J. Appl. Poult. Res. 9:414-423.
  23. Klasing, K. C. 1984. Effect of inflammatory agents and interleukine-1 on iron and zinc metabolism. Am. J. Physiol. 247:901-904.
  24. Fraifeld, V. and J. Kaplanski. 1998. Brain eicosanoids and LPS fever: species and age differences. Prog. Brain Res. 115:141-156.
  25. Hill, C. H. 1989. Effect of Salmonella gallinarum infection on zinc metabolism in chicks. Poult. Sci. 68:297-305.
  26. Singh, C. and S. P. S. Singha. 2002. Effect of dexamethasone stress on concentrations of zinc in blood plasma and in subcellular fractions of various tissues of neonatal buffalo calves. Asian-Aust. J. Anim. Sci. 15:1022-1025.
  27. Driessen, C., K. Hirv, H. Kirchner and L. Rink. 1995b. Zinc regulates cytokine induction by superantigens and lipopolysaccharide. Immunology. 84:272-277.
  28. Eaton, D. L. and B. F. Toal. 1982. Evaluation of the Cd/hemoglobin affinity assay for rapid determination of metallothionein in biological tissues. Toxicol. Appl. Pharmacol. 66:134-142.
  29. Ferket, P. R. and M. A. Qureshi. 1992. Effect of level of inorganic and organic zinc and manganese on the immune function of turkey toms. Poult. Sci. 71 (Suppl.):60 (Abstr.).
  30. Dardenne, M. and J. M. Bach. 1993. Rational for the mechanism of zinc interaction in the immune system. In: Nutrient Modulation of the Immune Response (Ed. S. Cunning ham- Rundles), Marcel Dekker Inc. New York. pp. 501-509.
  31. Gaetke, L. M., C. J. McClain, R. T. Talwalkar and S. T. Shedlofsky. 1997. Effects of endotoxin on zinc metabolism in human volunteers. Am. J. Physiol. 272 (Endorcrinol. Metab. 35:E952-956.
  32. Butler, E. J. and M. J. Curtis. 1973. The effect of Escherichia coli endotoxin and ACTH on the plasma zinc concentration in the domestic fowl. Res. Vet. Sci. 15:363-367.
  33. Luheshi, G. L. 1999. Cytokines and fever. An NY Acad. Sci. 856:83-89.
  34. Driessen, C., K. Hirv, L. Rink and H. Kirchner. 1994. Induction of cytokine by zinc ions in human peripheral blood mononuclear cell and separated monocytes. Lymphokine Cytokine Res. 13:15-20.
  35. Hernandez, J., M. Giralt, E. Belloso, D. V. Rebollo, B. Romero and J. Hidaigo. 1996. Interaction between metallothionein inducers in rat liver and primary culture of rat hepatocytes. Chem. Bio. Interact. 100:27-40.
  36. Power, R. and K. Horgan. 2000. Biological chemistry and absorption of inorganic and organic trace metals. In: Biotechnology in the Feed Industry. (Ed. T. P. Lyon and K. A. Jacques) Nottingham University Press, Nottingham, UK. pp. 277-291.
  37. Richards, M. P. 1989. Characterization of the metal composition of metallothionein isoforms using reversed-phase highperformance liquid chromatography with atomic absorption spectrophotometric detection. J. Chromatogr. 482:87-97.
  38. Cao, J., P. R. Henry, R. Guo, R. A. Holwerda, J. P. Toth, R. C. Littell, S. R. Miles and C. B. Ammerman. 2000. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. J. Anim. Sci. 78:2039-2054.
  39. Blalock, T. L., M. A. Dunn and R. J. Cousins. 1988. Metallothionein gene expression in rats: Tissue-specific regulation by dietary copper and zinc. J. Nutr. 118:222-228.
  40. Driessen, C., K. Hirv, H. Kirchner and L. Rink. 1995a. Divergent effects of zinc or different bacterial pathogenic agents. J. Infect. Dis. 171:486-489.
  41. Kidd, M. T., M. A. Qureshi, P. R. Ferket and L. N. Thomas. 1994b. Dietary zinc methionine enhances mononuclear-phagocytic function in young turkeys. Bio. Trace Elem. Res. 42:217-229.