DOI QR코드

DOI QR Code

Homeodomain-leucine Zipper Proteins Interact with a Plant Homologue of the Transcriptional Co-activator Multiprotein Bridging Factor 1

  • Zanetti, Maria Eugenia (Instituto de Investigaciones Biologicas, Departamento de Biologia, Universidad Nacional de Mar del Plata) ;
  • Chan, Raquel L. (Catedra de Biologia Celular y Molecular, Facultad de Bioquimica y Ciencias Biologicas, Universidad Nacional del Litoral) ;
  • Godoy, Andrea V. (Instituto de Investigaciones Biologicas, Departamento de Biologia, Universidad Nacional de Mar del Plata) ;
  • Gonzalez, Daniel H. (Catedra de Biologia Celular y Molecular, Facultad de Bioquimica y Ciencias Biologicas, Universidad Nacional del Litoral) ;
  • Casalongue, Claudia A. (Instituto de Investigaciones Biologicas, Departamento de Biologia, Universidad Nacional de Mar del Plata)
  • Published : 2004.05.31

Abstract

StMBF1 (Solanum tuberosum multiprotein bridging factor 1) is a plant member of the MBF1 family of transcriptional co-activators. In an attempt to understand the role of StMBF1, we analyzed its interaction with plant transcription factors of the homeodomain-leucine zipper (Hd-Zip) family, a group of proteins with a typical leucine zipper motif adjacent to a homeodomain. StMBF1 is able to interact in vitro with the Hd-Zip protein Hahb-4 both in the presence and absence of DNA. Upon binding, StMBF1 increases the DNA binding affinity of Hahb-4, and of another plant homeodomain containing protein from the GL2/Hd-Zip IV family, HAHR-1. The biological role of interactions is discussed in this paper.

References

  1. Chan, R. L., Gago, G. M., Palena, C. M. and Gonzalez, D. H. (1998) Homeoboxes in plant development. Biochim. Biophys. Acta 1442, 1-19. https://doi.org/10.1016/S0167-4781(98)00119-5
  2. Cormack, R. S., Hahlbrock, K. and Somssich, I. E. (1998) Isolation of putative plant transcriptional co-activators using a modified two-hybrid system incorporating a GFP reporter gene. Plant J. 14, 685-692. https://doi.org/10.1046/j.1365-313x.1998.00169.x
  3. Fields, S. and Song, O.-K. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245-246. https://doi.org/10.1038/340245a0
  4. Fields, S. and Sternglanz, R. (1994) The two-hybrid system: an assay for protein-protein interactions. Trends Genet. 10, 286-292. https://doi.org/10.1016/0168-9525(90)90012-U
  5. Gago, G. M., Almoguera, C., Jordano, J., Gonzalez, D. H. and Chan, R. (2002) Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant Cell Environ. 25, 633-640. https://doi.org/10.1046/j.1365-3040.2002.00853.x
  6. Gehring, W. J. (1987) Homeoboxes in the study of development. Science 236, 1245-1252. https://doi.org/10.1126/science.2884726
  7. Gehring, W. J., Qian, Y. Q., Billeter, M., Furukubo-Tokunaga, K., Schier, A. F, Resendez-Perez D., Affolter, M., Otting, G. and Wuthrich, K. (1994) Homeodomain-DNA recognition. Cell 78, 211-223. https://doi.org/10.1016/0092-8674(94)90292-5
  8. Godoy, A. V., Zanetti, M. E., San Segundo, B. and Casalongue, C. (2001) A novel Solanum tuberosum transcriptional co-adaptor or co-activator is up-regulated in potato tubers by fungal infection and wounding. Physiol. Plantarum 112, 217-222. https://doi.org/10.1034/j.1399-3054.2001.1120210.x
  9. Harlow, E. and Lane, D. (1988) Antibodies. A laboratory Manual, 1st ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA.
  10. Kabe, Y., Goto, M., Shina, D., Imai, T., Wada, T., Morohashi, KI., Shirakawa, M., Hirose, S. and Handa, H. (1999) The role of human MBF1 as a transcriptional co-activator. J. Biol. Chem. 274, 34196-34202. https://doi.org/10.1074/jbc.274.48.34196
  11. Korfhage, U., Trezzini, G. F., Meier, I., Hahlbrock, K. and Somssich, I. E. (1994) Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene. Plant Cell 6, 695-708. https://doi.org/10.1105/tpc.6.5.695
  12. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  13. Lewin, B. (1990) Commitment and activation at pol II promoter: a tail of protein-protein interactions. Cell 61, 1161-1164. https://doi.org/10.1016/0092-8674(90)90675-5
  14. Li, F. -Q., Ueda, H. and Hirose, S. (1994) Mediators of activation of fushi tarazu gene transcription by BmFTz-F1. Mol. Cell. Biol. 14, 3013-3021.
  15. Matsushita,Y., Miyakawa, O., Deguchi, M., Nishiguchi, M. and Nyunoya, H. (2002) Cloning of a tobacco cDNA coding for a putative transcriptional co-activator MBF1 that interacts with the tomato mosaic virus movement protein. J. Exp. Bot. 53, 1531- 1532. https://doi.org/10.1093/jexbot/53.373.1531
  16. Palena, C. M., Chan, R. L. and Gonzalez, D. H. (1997) A novel type of dimerization motif, related to leucine zippers, is present in plant homeodomain proteins. Biochim. Biophys. Acta 1352, 203-212. https://doi.org/10.1016/S0167-4781(97)00012-2
  17. Palena, C. M., Gonzalez, D. H. and Chan, R. L. (1999) A monomer-dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNA. Biochem. J. 341, 81-87. https://doi.org/10.1042/0264-6021:3410081
  18. Palena, C. M., Gonzalez, D. H., Guelman, S. and Chan, R. L. (1998) Expression of sunflower homeodomain containing proteins in Escherichia coli: Purification and functional studies. Protein Expres. Purif. 13, 97-103. https://doi.org/10.1006/prep.1998.0875
  19. Palena, C. M., Tron, A. E., Bertoncini, C. W., Gonzalez, D. H. and Chan, R. L. (2001) Positively charged residues at the Nterminal arm of the homeodomain are required for efficient DNA binding by homeodomain-leucine zipper proteins. J. Mol. Biol. 308, 39-47. https://doi.org/10.1006/jmbi.2001.4563
  20. Plesch, G., Störmann, K., Torres, J. T., Walden, R. and Somssich, I. E. (1997) Developmental and auxin-induced expression of the Arabidopsis thaliana prha homeobox gene. Plant J. 12, 635-647. https://doi.org/10.1046/j.1365-313X.1997.d01-15.x
  21. Qian, Y. Q., Billeter, M., Otting, G., Muller, M., Gehring, W. J., and Wuthrich, K. (1989) The structure of the Antennapedia homeodomain determined by MNR spectroscopy in solution: comparison with prokaryotic repressors. Cell 59, 573-580. https://doi.org/10.1016/0092-8674(89)90040-8
  22. Roeder, R. G. (1991) The complexities of eukaryotic transcription initiation: regulation of preinitiation of complex assembly. Trends Biochem. Sci. 16, 402-408. https://doi.org/10.1016/0968-0004(91)90164-Q
  23. Ruberti, I., Sessa, G., Lucchetti, S. and Morelli, G. (1991) A novel class of proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J. 10, 1787-1791.
  24. Schena, M. and Davis, R. W. (1992) HD-Zip proteins: Members of an Arabidopsis homeodomain protein superfamily. Proc. Natl. Acad. Sci. USA 89, 3894-3898. https://doi.org/10.1073/pnas.89.9.3894
  25. Sedmak, J. and Grossberg, S. (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G-250. Anal. Biochem. 79, 544-552. https://doi.org/10.1016/0003-2697(77)90428-6
  26. Sessa, G., Morelli, G. and Ruberti, I. (1993) The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. EMBO J. 12, 3507-3517.
  27. Soderman, E., Mattsson, J. and Engstrom, A. (1996) The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J. 10, 375-381. https://doi.org/10.1046/j.1365-313X.1996.10020375.x
  28. Somssich, I. E. (1994) Regulatory elements governing pathogenesis-related (PR) gene expression; in Results and Problems in Cell Differentiation, Nover L. (ed.), pp. 163-179, Springer-Verlag, Berlin, Germany.
  29. Takemaru, K., Harashima, S., Ueda, H. and Hirose, S. (1997) Multiprotein bridging factor 1 (MBF1) is an evolutionarily conserved transcriptional co-activator that connects a regulatory factor and TATA element-binding protein. Proc. Natl. Acad. Sci. USA 94, 7251-7256. https://doi.org/10.1073/pnas.94.14.7251
  30. Takemaru, K., Harashima, S., Ueda, H. and Hirose, S. (1998) Yeast co-activator MBF1 mediates GCN4-dependent transcriptional activation. Mol. Cell. Biol. 18, 4971-4976.
  31. Valle, E. M., Gonzalez, D. H., Gago, G. and Chan, R. L. (1997) Isolation and expression pattern of hahr1, a homeobox containing cDNA from Helianthus annuus. Gene 196, 61-68. https://doi.org/10.1016/S0378-1119(97)00193-5
  32. Zanetti, M. E., Blanco, F. A., Daleo, G. R. and Casalongue C. A. (2003) Phosphorylation of a member of the MBF1 transcriptional co-activator family, StMBF1, is stimulated in potato cell suspensions upon fungal elicitor challenge. J. Exp. Bot. 54, 623-632. https://doi.org/10.1093/jxb/erg061
  33. Zegzouti, H., Jones, B., Frasse, P., Marty, C., Maitre, B., Latche, A., Pech, J. C. and Bouzayen, M. (1999) Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripening-related genes isolated by differential display. Plant J. 18, 589-600. https://doi.org/10.1046/j.1365-313x.1999.00483.x
  34. Zhu, G., LaGier, M. J., Hirose, S. and Keithly, J. S. (2000) Cryptosporidium parvum: functional complementation of the parasite transcriptional co-activator CpMBF1 in yeast. Exp. Parasitol. 96, 195-201. https://doi.org/10.1006/expr.2000.4574

Cited by

  1. Duplication of a well-conserved homeodomain-leucine zipper transcription factor gene in barley generates a copy with more specific functions vol.10, pp.1, 2010, https://doi.org/10.1007/s10142-009-0134-y
  2. Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli vol.190, pp.4, 2011, https://doi.org/10.1111/j.1469-8137.2011.03733.x
  3. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection vol.197, 2012, https://doi.org/10.1016/j.plantsci.2012.08.013