DOI QR코드

DOI QR Code

Calcium-binding Peptides Derived from Tryptic Hydrolysates of Cheese Whey Protein

  • Kim, S.B. (Division of Animal Science and Technology, College of Agriculture and Life Sciences Gyeongsang National University) ;
  • Lim, J.W. (Division of Animal Science and Technology, College of Agriculture and Life Sciences Gyeongsang National University)
  • Received : 2004.02.20
  • Accepted : 2004.06.12
  • Published : 2004.10.01

Abstract

The purpose of this research was to investigate the potential use of cheese whey protein (CWP), a cheese by-product. The physiological activity of calcium-binding peptides in CWP may be used as a food additive that prevents bone disorders. This research also examined the characteristics of calcium-binding peptides. After the CWP was heat treated, it was hydrolyzed by trypsin. Then calcium-binding peptides were separated and purified by ion-exchange chromatography and reverse phase HPLC, respectively. To examine the characteristics of the purified calcium-binding peptides, amino acid composition and amino acid sequence were analyzed. Calcium-binding peptides with a small molecular weight of about 1.4 to 3.4 kDa were identified in the fraction that was flowed out from 0.25 M NaCl step gradient by ion-exchange chromatography of tryptic hydrolysates. The results of the amino acid analysis revealed that glutamic acid in a calcium-binding site took up most part of the amino acids including a quantity of proline, leucine and lysine. The amino acid sequence of calcium-binding peptides showed Phe-Leu-Asp-Asp-Asp-Leu-Thr-Asp and Ile-Leu-Asp-Lys from $\alpha$-LA and Ile-Pro-Ala-Val-Phe-Lys and Val-Tyr-Val-Glu-Glu-Leu-Lys from ${\beta}$-LG.

Keywords

Cheese Whey Protein;Calcium-binding Peptide;Tryptic Hydrolysate

References

  1. AOAC. 1990. Official Methods of Analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Verginia.
  2. Bradford, M. M. 1976. A rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Harwalkar, V. R. and D. J. McMahon. 1993. Symposium: Biological and food functional characterizations of milk protein hydrolysis products. J. Dairy Sci. 76:300.
  4. Kosikowski, F. 1982. Cheese and fermented milk foods. 2nd ed. Edward Brothers Inc., Michigan, USA.
  5. Moore, S., D. H. Spackman and W. H. Stein. 1958. Automatic recording apparatus for use in the chromatography of amino acids. Fed. Proc. 17:1107-1115.
  6. Shaw, D., M. Messer, A. M. Scrivener, K. R. Nicholas and M. Griffiths. 1993. Isolation, partial characterization and amino acid sequence of $\alpha$-lactalbumin from platypus (Ornithorynchus anatinus) milk. Biochem. Biophys. Acta. 1161:177-186.
  7. Tamura, M., T. Oku and N. Hosoya. 1982. Calcium-binding proteins in bovine milk: Calcium-binding properties and amino acid composition. J. Nutr. Sci. Vitaminol (Tokyo). 28:533-541. https://doi.org/10.3177/jnsv.28.533
  8. Vegarud, G. E., T. Langsrud and C. Svenning. 2000. Mineralbinding milk proteins and peptides; occurrence, biochemical and technological characteristics. Br. J. Nutr. 84:S91-98.
  9. Veprintsev, D. B., M. Narayan, S. E. Permyakov, V. N. Uversky, C. L. Brooks, A. M. Cherskaya, E. A. Permyakov and L. J. Berliner. 1999. Fine tuning the N-terminus of a calcium binding protein: $\alpha$-lactalbumin. Proteins. 37:65-72.
  10. Wong, N. P., D. E. LaCroix and F. E. McDonough. 1978. Minerals in whey and whey fractions. J. Dairy Sci. 61:1700-1703.
  11. Fullmer, C. S. and R. H. Wasserman. 1981. The amino acid sequence of bovine intestinal calcium-binding protein. J. Biol. Chem. 256:5669-5674.
  12. Noyelle, K. and H. van Dael. 2002. Kinetics of conformational changes induced by the binding of various metal ions to bovine $\alpha$-lactalbumin. J. Inorg. Biochem. 88:69-76.
  13. Jeyarajah, S. and J. C. Allen. 1994. Calcium binding and saltinduced structural changes of native and preheated$\beta$- lactoglobulin. J. Agric. Food Chem. 42:80-85.
  14. Rose, D., D. T. Davies and M. Yaguchi. 1969. Quantitative determination of the major components of casein mixture by column chromatography on DEAE-cellulose. J. Dairy Sci. 52:8-11.
  15. Kitts, D. D. and Y. V. Yuan. 1992. Caseinophosphopeptides and calcium bioavailability. Trends Food Sci. Tech. 3:31-35.
  16. Permyakov, E. A., V. V. Yarmolenko, L. P. Kalinichenko, L. A. Morozova and E. A. Burstein. 1981. Calcium binding to alphalactalbumin: Structural rearrangement and association constant evaluation by means of intrinsic protein fluorescence changes. Biochem. Biophys. Res. Commun. 100:191-197.
  17. Renner, E. 1994. Dairy calcium, bone metabolism and prevention of osteoporosis. J. Dairy Sci. 77:3498-3505.
  18. Adamson, N. J. and E. C. Reynolds. 1996. Characterization of casein phosphopeptides prepared using alcalase: Determination of enzyme specificity. Enzyme Microb. Tech. 19:202-207.
  19. Anderson, P. J., C. L. Brooks and L. J. Berliner. 1997. Functional identification of calcium binding residues in bovine $\alpha$- lactalbumin. Biochemistry. 36:11648-11654.
  20. Bennett, T., A. Desmond, M. Harrington, D. McDonagh, R. FitzGerald, A. Flynn and K. D. Cashman. 2000. The effect of high intakes of casein and casein phosphopeptide on calcium absorption in the rat. Br. J. Nutr. 83:673-680.
  21. Kim, S. B., H. S. Shin and J. W. Lim. 2004. Separation of calciumbinding protein derived from enzymatic hydrolysates of cheese whey protein. Asian-Aust. J. Anim. Sci. 17:712-718. https://doi.org/10.5713/ajas.2004.712
  22. Osborne, C. G., R. B. Mc Tyre, J. Dudek, K. E. Roche, R. Scheuplein, B. Silverstein, M. S. Weinberg and A. A. Salkeld. 1996. Evidence for the relationship of calcium to blood pressure. Nutr. Rev. 54:365-381.
  23. Pintado, M. E., A. E. Pintado and F. X. Malcata. 1999. Controlled whey protein hydrolysis using two alternative protease. J. Food Eng. 42:1-13.
  24. Lipkin, M. and H. Newmark. 1985. Effect of added dietary calcium on colonic epithelial-cell proliferation in subjects at high risk for familial colonic cancer. New England J. Med. 313:1381-1384.
  25. Stuart, D. I., K. R. Acharya, N. P. C. Walker, S. G. Smith, M. Lewis and D. C. Phillips. 1986.$\alpha$ -lactalbumin possesses a novel calcium binding loop. Nature (Load). 324:84-87.
  26. Wasserman, R. H., C. S. Fullmer and A. N. Taylor. 1978. The vitamin D-dependent calcium-binding proteins. In: Vitamin D (Ed. D. E. M. Lawson). Academic Press Inc., NY, USA. 133-166.
  27. Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166:368-379.
  28. Friedlander, E. J. and A. W. Norman. 1980. Purification of chick intestinal calcium binding protein. Methods Enzymol. 67:504-508.
  29. Nemirovskiy, O. V. and M. L. Gross. 2000. Intrinsic Ca2+ affinities of peptides: Application of the kinetic method to analogs of calcium-binding site III of rabbit skeletal troponin C. J. Am. Soc. Mass Spectrom. 11:770-779.
  30. Tuan, R. S., W. A. Scott and Z. A. Cohn. 1978. Purification and characterization of calcium-binding protein from chick chorioallantoic membrane. J. Biol. Chem. 253:1011-1016.
  31. Turgeon, S. L. and S. F. Gauthier. 1990. Whey peptide fractions obtained with a two-step ultrafiltration process: Production and characterization. J. Food Sci. 55:106-110.
  32. Reynolds, E. C. 1997. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J. Dent. Res. 76:1587-1595. https://doi.org/10.1177/00220345970760091101
  33. Hiraoka, Y., T. Segawa, K. Kuwajima, S. Sugai and N. Murai. 1980. $\alpha$-Lactalbumin: A calcium metalloprotein. Biochem. Biophys. Res. Commun. 95:1098-1104.
  34. Wang, J. H. and D. M. Waisman. 1979. Calmodulin and its role in the second-messenger system. Curr. Top. Cell. Regul. 15:47-107.
  35. Avioli, L. V. 1984. Calcium and osteoporosis. Annu. Rev. Nutr. 4:471-491. https://doi.org/10.1146/annurev.nu.04.070184.002351
  36. Kitts, D. D. and Y. V. Yuan. 1992. Caseinophosphopeptides and calcium bioavailability. Trends Food Sci. Tech. 3:31-35.
  37. Feng, M., L. van der Does and A. Bantjes. 1995. Preparation of apo-lactoferrin with a very low iron saturation. J. Dairy Sci. 78:2352-2357.
  38. Spencer, H. and L. Kramer. 1986. NIH consensus conference: osteoporosis. Factors contributing to osteoporosis. J. Nutr. 116:316-319.

Cited by

  1. Enzymatic Hydrolysis of Heated Whey: Iron-Binding Ability of Peptides and Antigenic Protein Fractions vol.90, pp.9, 2007, https://doi.org/10.3168/jds.2007-0228
  2. Review of in vitro digestion models for rapid screening of emulsion-based systems vol.1, pp.1, 2010, https://doi.org/10.1039/c0fo00111b
  3. Calcium Binding Peptide Motifs from Calmodulin Confer Divalent Ion Selectivity to Elastin-Like Polypeptides vol.14, pp.7, 2013, https://doi.org/10.1021/bm400464s
  4. Novel Peptide with a Specific Calcium-Binding Capacity from Whey Protein Hydrolysate and the Possible Chelating Mode vol.62, pp.42, 2014, https://doi.org/10.1021/jf502412f
  5. Preparation, characterization and identification of calcium-chelating Atlantic salmon (Salmo salar L.) ossein oligopeptides vol.241, pp.6, 2015, https://doi.org/10.1007/s00217-015-2510-2
  6. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate vol.82, pp.01, 2015, https://doi.org/10.1017/S0022029914000715
  7. Effects of Calcium-Binding Peptide from Tilapia Scale Protein Hydrolysates on Calcium Absorption in Caco-2 Cells vol.25, pp.8, 2016, https://doi.org/10.1080/10498850.2015.1051258
  8. Bioactive Peptides Isolated from Casein Phosphopeptides Enhance Calcium and Magnesium Uptake in Caco-2 Cell Monolayers vol.65, pp.11, 2017, https://doi.org/10.1021/acs.jafc.6b05711
  9. Enhanced Emulsifying and Calcium-binding Properties of Fermented Soybean Meal pp.1976-3816, 2019, https://doi.org/10.1007/s12257-018-0237-1