Calcium-binding Peptides Derived from Tryptic Hydrolysates of Cheese Whey Protein

  • Kim, S.B. (Division of Animal Science and Technology, College of Agriculture and Life Sciences Gyeongsang National University) ;
  • Lim, J.W. (Division of Animal Science and Technology, College of Agriculture and Life Sciences Gyeongsang National University)
  • Received : 2004.02.20
  • Accepted : 2004.06.12
  • Published : 2004.10.01


The purpose of this research was to investigate the potential use of cheese whey protein (CWP), a cheese by-product. The physiological activity of calcium-binding peptides in CWP may be used as a food additive that prevents bone disorders. This research also examined the characteristics of calcium-binding peptides. After the CWP was heat treated, it was hydrolyzed by trypsin. Then calcium-binding peptides were separated and purified by ion-exchange chromatography and reverse phase HPLC, respectively. To examine the characteristics of the purified calcium-binding peptides, amino acid composition and amino acid sequence were analyzed. Calcium-binding peptides with a small molecular weight of about 1.4 to 3.4 kDa were identified in the fraction that was flowed out from 0.25 M NaCl step gradient by ion-exchange chromatography of tryptic hydrolysates. The results of the amino acid analysis revealed that glutamic acid in a calcium-binding site took up most part of the amino acids including a quantity of proline, leucine and lysine. The amino acid sequence of calcium-binding peptides showed Phe-Leu-Asp-Asp-Asp-Leu-Thr-Asp and Ile-Leu-Asp-Lys from $\alpha$-LA and Ile-Pro-Ala-Val-Phe-Lys and Val-Tyr-Val-Glu-Glu-Leu-Lys from ${\beta}$-LG.


  1. Adamson, N. J. and E. C. Reynolds. 1996. Characterization of casein phosphopeptides prepared using alcalase: Determination of enzyme specificity. Enzyme Microb. Tech. 19:202-207.
  2. Anderson, P. J., C. L. Brooks and L. J. Berliner. 1997. Functional identification of calcium binding residues in bovine $\alpha$- lactalbumin. Biochemistry. 36:11648-11654.
  3. AOAC. 1990. Official Methods of Analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Verginia.
  4. Avioli, L. V. 1984. Calcium and osteoporosis. Annu. Rev. Nutr. 4:471-491.
  5. Bennett, T., A. Desmond, M. Harrington, D. McDonagh, R. FitzGerald, A. Flynn and K. D. Cashman. 2000. The effect of high intakes of casein and casein phosphopeptide on calcium absorption in the rat. Br. J. Nutr. 83:673-680.
  6. Bradford, M. M. 1976. A rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
  7. Feng, M., L. van der Does and A. Bantjes. 1995. Preparation of apo-lactoferrin with a very low iron saturation. J. Dairy Sci. 78:2352-2357.
  8. Friedlander, E. J. and A. W. Norman. 1980. Purification of chick intestinal calcium binding protein. Methods Enzymol. 67:504-508.
  9. Fullmer, C. S. and R. H. Wasserman. 1981. The amino acid sequence of bovine intestinal calcium-binding protein. J. Biol. Chem. 256:5669-5674.
  10. Harwalkar, V. R. and D. J. McMahon. 1993. Symposium: Biological and food functional characterizations of milk protein hydrolysis products. J. Dairy Sci. 76:300.
  11. Hiraoka, Y., T. Segawa, K. Kuwajima, S. Sugai and N. Murai. 1980. $\alpha$-Lactalbumin: A calcium metalloprotein. Biochem. Biophys. Res. Commun. 95:1098-1104.
  12. Jeyarajah, S. and J. C. Allen. 1994. Calcium binding and saltinduced structural changes of native and preheated$\beta$- lactoglobulin. J. Agric. Food Chem. 42:80-85.
  13. Kim, S. B., H. S. Shin and J. W. Lim. 2004. Separation of calciumbinding protein derived from enzymatic hydrolysates of cheese whey protein. Asian-Aust. J. Anim. Sci. 17:712-718.
  14. Kitts, D. D. and Y. V. Yuan. 1992. Caseinophosphopeptides and calcium bioavailability. Trends Food Sci. Tech. 3:31-35.
  15. Kosikowski, F. 1982. Cheese and fermented milk foods. 2nd ed. Edward Brothers Inc., Michigan, USA.
  16. Lipkin, M. and H. Newmark. 1985. Effect of added dietary calcium on colonic epithelial-cell proliferation in subjects at high risk for familial colonic cancer. New England J. Med. 313:1381-1384.
  17. Moore, S., D. H. Spackman and W. H. Stein. 1958. Automatic recording apparatus for use in the chromatography of amino acids. Fed. Proc. 17:1107-1115.
  18. Nemirovskiy, O. V. and M. L. Gross. 2000. Intrinsic Ca2+ affinities of peptides: Application of the kinetic method to analogs of calcium-binding site III of rabbit skeletal troponin C. J. Am. Soc. Mass Spectrom. 11:770-779.
  19. Noyelle, K. and H. van Dael. 2002. Kinetics of conformational changes induced by the binding of various metal ions to bovine $\alpha$-lactalbumin. J. Inorg. Biochem. 88:69-76.
  20. Osborne, C. G., R. B. Mc Tyre, J. Dudek, K. E. Roche, R. Scheuplein, B. Silverstein, M. S. Weinberg and A. A. Salkeld. 1996. Evidence for the relationship of calcium to blood pressure. Nutr. Rev. 54:365-381.
  21. Permyakov, E. A., V. V. Yarmolenko, L. P. Kalinichenko, L. A. Morozova and E. A. Burstein. 1981. Calcium binding to alphalactalbumin: Structural rearrangement and association constant evaluation by means of intrinsic protein fluorescence changes. Biochem. Biophys. Res. Commun. 100:191-197.
  22. Pintado, M. E., A. E. Pintado and F. X. Malcata. 1999. Controlled whey protein hydrolysis using two alternative protease. J. Food Eng. 42:1-13.
  23. Renner, E. 1994. Dairy calcium, bone metabolism and prevention of osteoporosis. J. Dairy Sci. 77:3498-3505.
  24. Reynolds, E. C. 1997. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J. Dent. Res. 76:1587-1595.
  25. Rose, D., D. T. Davies and M. Yaguchi. 1969. Quantitative determination of the major components of casein mixture by column chromatography on DEAE-cellulose. J. Dairy Sci. 52:8-11.
  26. Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166:368-379.
  27. Shaw, D., M. Messer, A. M. Scrivener, K. R. Nicholas and M. Griffiths. 1993. Isolation, partial characterization and amino acid sequence of $\alpha$-lactalbumin from platypus (Ornithorynchus anatinus) milk. Biochem. Biophys. Acta. 1161:177-186.
  28. Spencer, H. and L. Kramer. 1986. NIH consensus conference: osteoporosis. Factors contributing to osteoporosis. J. Nutr. 116:316-319.
  29. Stuart, D. I., K. R. Acharya, N. P. C. Walker, S. G. Smith, M. Lewis and D. C. Phillips. 1986.$\alpha$ -lactalbumin possesses a novel calcium binding loop. Nature (Load). 324:84-87.
  30. Tamura, M., T. Oku and N. Hosoya. 1982. Calcium-binding proteins in bovine milk: Calcium-binding properties and amino acid composition. J. Nutr. Sci. Vitaminol (Tokyo). 28:533-541.
  31. Tuan, R. S., W. A. Scott and Z. A. Cohn. 1978. Purification and characterization of calcium-binding protein from chick chorioallantoic membrane. J. Biol. Chem. 253:1011-1016.
  32. Turgeon, S. L. and S. F. Gauthier. 1990. Whey peptide fractions obtained with a two-step ultrafiltration process: Production and characterization. J. Food Sci. 55:106-110.
  33. Vegarud, G. E., T. Langsrud and C. Svenning. 2000. Mineralbinding milk proteins and peptides; occurrence, biochemical and technological characteristics. Br. J. Nutr. 84:S91-98.
  34. Veprintsev, D. B., M. Narayan, S. E. Permyakov, V. N. Uversky, C. L. Brooks, A. M. Cherskaya, E. A. Permyakov and L. J. Berliner. 1999. Fine tuning the N-terminus of a calcium binding protein: $\alpha$-lactalbumin. Proteins. 37:65-72.
  35. Wang, J. H. and D. M. Waisman. 1979. Calmodulin and its role in the second-messenger system. Curr. Top. Cell. Regul. 15:47-107.
  36. Wasserman, R. H., C. S. Fullmer and A. N. Taylor. 1978. The vitamin D-dependent calcium-binding proteins. In: Vitamin D (Ed. D. E. M. Lawson). Academic Press Inc., NY, USA. 133-166.
  37. Wong, N. P., D. E. LaCroix and F. E. McDonough. 1978. Minerals in whey and whey fractions. J. Dairy Sci. 61:1700-1703.
  38. Kitts, D. D. and Y. V. Yuan. 1992. Caseinophosphopeptides and calcium bioavailability. Trends Food Sci. Tech. 3:31-35.

Cited by

  1. Enzymatic Hydrolysis of Heated Whey: Iron-Binding Ability of Peptides and Antigenic Protein Fractions vol.90, pp.9, 2007,
  2. Review of in vitro digestion models for rapid screening of emulsion-based systems vol.1, pp.1, 2010,
  3. Calcium Binding Peptide Motifs from Calmodulin Confer Divalent Ion Selectivity to Elastin-Like Polypeptides vol.14, pp.7, 2013,
  4. Novel Peptide with a Specific Calcium-Binding Capacity from Whey Protein Hydrolysate and the Possible Chelating Mode vol.62, pp.42, 2014,
  5. Preparation, characterization and identification of calcium-chelating Atlantic salmon (Salmo salar L.) ossein oligopeptides vol.241, pp.6, 2015,
  6. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate vol.82, pp.01, 2015,
  7. Effects of Calcium-Binding Peptide from Tilapia Scale Protein Hydrolysates on Calcium Absorption in Caco-2 Cells vol.25, pp.8, 2016,
  8. Bioactive Peptides Isolated from Casein Phosphopeptides Enhance Calcium and Magnesium Uptake in Caco-2 Cell Monolayers vol.65, pp.11, 2017,
  9. Enhanced Emulsifying and Calcium-binding Properties of Fermented Soybean Meal pp.1976-3816, 2019,