• KANG, JOO HO (Dept. of Math., Daegu University) ;
  • KIM, KI SOOK (Dept. of Math., Daegu University)
  • Received : 2004.08.02
  • Accepted : 2004.09.08
  • Published : 2004.12.25


Given operators X and Y acting on a Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i=Y_i$, for $i=1,2,{\cdots},n$. In this article, we obtained the following : Let ${\mathcal{H}}$ be a Hilbert space and let ${\mathcal{L}}$ be a commutative subspace lattice on ${\mathcal{H}}$. Let X and Y be operators acting on ${\mathcal{H}}$. Then the following statements are equivalent. (1) There exists an operator A in $Alg{\mathcal{L}}$ such that AX = Y, A is positive and every E in ${\mathcal{L}}$ reduces A. (2) sup ${\frac{{\parallel}{\sum}^n_{i=1}\;E_iY\;f_i{\parallel}}{{\parallel}{\sum}^n_{i=1}\;E_iX\;f_i{\parallel}}}:n{\in}{\mathbb{N}},\;E_i{\in}{\mathcal{L}}$ and $f_i{\in}{\mathcal{H}}<{\infty}$ and <${\sum}^n_{i=1}\;E_iY\;f_i$, ${\sum}^n_{i=1}\;E_iX\;f_i>\;{\geq}0$, $n{\in}{\mathbb{N}}$, $E_i{\in}{\mathcal{L}}$ and $f_i{\in}H$.


Subspace lattice;$Alg{\mathcal{L}}$;Positive Interpolation Problem;Positive Interpolating Operator


  1. Indiana University Math. J. v.29 The equation Tx = y in a reflexive operator algebra Hopenwasser, A.
  2. Illinois J. Math. v.33 no.4 Hilbert-Schmidt interpolation in CSL algebras Hopenwasser, A.
  3. Pacific J. of Math. v.140 no.1 Isometries of Tridiagonal Algebras Jo, Y.S.
  4. Houston J. of Math. v.20 no.4 Isomorphisms of Tridiagonal Algebras Jo, Y.S.;Choi, T.Y.
  5. Interpolation problems in AlgL Jo, Y.S.;Kang, J.H.
  6. J. Operator Theory v.29 Interpolation in nest algebras and applications to operator Corona Theorems Katsoulis, E.;Moore, R.L.;Trent, T.T.
  7. Proc. London Math. Soc. v.3 no.19 Some properties of nest algebras Lance, E.C.
  8. J. Math. Anal. Appl. v.140 Compact causal data interpolation Munch, N.
  9. Interpolating operators in nest algebras Anoussis, M.
  10. J. Functional Analysis v.3 Interpolation problems in nest algebras Arveson, W.B.
  11. J. Integral Equations and Operator Theory v.8 A commutant lifting theorem for triangular matrices with diverse applications Ball, J.A.;Gohberg, I.
  12. Ann. Math. v.76 Interpolation by bounded analytic functions and the corona problem Carleson, L.
  13. Nest algebras, Pitman Research Notes in Mathematics Davidson, K.R.
  14. Interpolation problems for ideals in certain reflexive operator algebras Anoussis, M.;Katsoulis, E.;Moore, R.L.;Trent, T.T.
  15. Proc. Amer. Math. Soc. v.17 On majorization, factorization, and range inclusion of operators on Hilbert space Douglas, R.G.
  16. Regional Conference Series in Mathematics no. 68 Operator theory, analytic functions, matrices, and electrical engineering Helton, J.W.