Physiological, Pharmacological and Toxicological Implications of Heterodimeric Amino Acid Transporters

  • Kanai, Yoshikatsu (Department of Pharmacology and Toxicology, Kyorin University School of Medicine) ;
  • Endou, Hitoshi (Department of Pharmacology and Toxicology, Kyorin University School of Medicine)
  • Published : 2004.06.21

Abstract

The heterodimeric amino acid transporter family is a subfamily of SLC7 solute transporter family which includes 14-transmembrane cationic amino acid transporters and 12-transmembrane heterodimeric amino acid transporters. The members of heterodimeric amino acid transporter family are linked via a disulfide bond to single membrane spanning glycoproteins such as 4F2hc (4F2 heavy chain) and rBAT $(related\;to\;b^0,\;^+-amino\;acid\;transporter)$. Six members are associated with 4F2hc and one is linked to rBAT. Two additional members were identified as ones associated with unknown heavy chains. The members of heterodimeric amino acid transporter family exhibit diverse substrate selectivity and are expressed in variety of tissues. They play variety of physiological roles including epithelial transport of amino acids as well as the roles to provide cells in general with amino acids for cellular nutrition. The dysfunction or hyperfunction of the members of the heterodimeric amino acid transporter family are involved in some diseases and pathologic conditions. The genetic defects of the renal and intestinal transporters $b^{0,+}AT/BAT1\;(b^{0,+}-type\;amino\;acid\;transporter/b^{0,+}-type\;amino\;acid\;transporter\;1)$ and $y^+LAT1\;(y^+L-type\;amino\;acid\;transporter\;1)$ result in the amino aciduria with sever clinical symptoms such as cystinuria and lysin uric protein intolerance, respectively. LAT1 is proposed to be involved in the progression of malignant tumor. xCT (x-C-type transporter) functions to protect cells against oxidative stress, while its over-function may be damaging neurons leading to the exacerbation of brain damage after brain ischemia. Because of broad substrate selectivity, system L transporters such as LAT1 transport amino acid-related compounds including L-Dopa and function as a drug transporter. System L also interacts with some environmental toxins with amino acid-related structure such as cysteine-conjugated methylmercury. Therefore, these transporter would be candidates for drug targets based on new therapeutic strategies.

References

  1. Bertran J, Magagnin S, Werner A, Markovich D, Biber J, Testar X, Zorzano A, Kuhn LC, Palacin M, Murer H. Stimulation of system y($^+$)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes. Proc Natl Acad Sci USA 89: 5606-5610, 1992a. https://doi.org/10.1073/pnas.89.12.5606
  2. Bridges CC, Kekuda R, Wang H, Prasad PD, Mehta P, Huang W, Smith SB, Ganapathy V. Structure, function, and regulation of human cystine/glutamate transporter in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 42: 47-54, 2001
  3. Broer A, Klingel K, Kowalczuk S, Rasko JEJ, Cavanaugh J, Broer S. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem in press 2004
  4. Chairoungdua A, Segawa H, Kim JY, Miyamoto K, Haga H, Fukui Y, Mizoguchi K, Ito H, Takeda E, Endou H, Kanai Y. Identification of an amino acid transporter associated with the cystinuria-related type II membrane glycoprotein. J Biol Chem 274: 28845-28848, 1999 https://doi.org/10.1074/jbc.274.41.28845
  5. Harada N, Nagasaki A, Hata H, Matsuzaki H, Matsuno F, Mitsuya H. Down-regulation of CD98 in melphalan-resistant myeloma cells with reduced drug uptake. Acta Haematol 103: 144-151, 2000 https://doi.org/10.1159/000041037
  6. Haynes BF, Hemler ME, Mann DL, Eisenbarth GS, Shelhamer J, Mostowski HS, Thomas CA, Strominger JL, Fauci AS. Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J Immunol 126: 1409-1414, 1981
  7. Hemler ME, Strominger JL. Characterization of antigen recognized by the onoclonal antibody (4F2): different molecular forms on human T and B lymphoblastoid cell lines. J Immunol 129: 623- 628, 1982
  8. International Cystinuria Consortium. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (b$^{0, +}$AT) of rBAT. Nature Genet 23: 52-57, 1999
  9. Kanai Y. Family of neutral and acidic amino acid transporters: molecular biology, physiology and medical implications. Curr Opin Cell Biol 9: 565-572, 1997 https://doi.org/10.1016/S0955-0674(97)80035-X
  10. Kim DK, Kanai Y, Matsuo H, Kim JY, Chairoungdua A, Kobayashi Y, Enomoto A, Cha SH, Goya T, Endou, H. The human T-type amino Acid transporter-1: characterization, gene organization, and chromosomal location. Genomics 79: 95-103, 2002b https://doi.org/10.1006/geno.2001.6678
  11. Matsuo H, Kanai Y, Kim JY, Chairoungdua A, Kim DK, Inatomi J, Shigeta Y, Ishimine H, Chaekuntode S, Tachampa K, Choi HW, Babu E, Fukuda J, Endou H. Identification of a novel Na$^+$ -independent acidic amino acid transporter with structural similarity to the member of heterodimeric amino acid transporter family associated with unknown heavy chains. J Biol Chem 277: 21017-21026, 2002 https://doi.org/10.1074/jbc.M200019200
  12. Matsuo H, Tsukada S, Nakata T, Chairoungdua A, Kim DK, Cha SH, Inatomi J, Yorifuji H, Fukuda J, Endou H, Kanai Y. Expression of a system L neutral amino acid transporter at the blood-brain barrier. Neuroreport 11: 3507-3511, 2000 https://doi.org/10.1097/00001756-200011090-00021
  13. Nakanishi T, Sugawara M, Huang W, Martindale RG, Leibach FH, Ganapathy ME, Prasad PD, Ganapathy V. Structure, function, and tissue expression pattern of human SN2, a subtype of the amino acid transport system N. Biochem Biophys Res Commun 281: 1343-1348, 2001 https://doi.org/10.1006/bbrc.2001.4504
  14. Patel NJ, Fullone JS, Anders MW. Brain uptake of S-(1,2-dichlorovinyl) glutathione and S-(1,2-dichlorovinyl)-L-cysteine, the glutathione and cysteine S-conjugates of the neurotoxin dichloroacetylene. Mol Brain Res 17: 53-58, 1993 https://doi.org/10.1016/0169-328X(93)90072-W
  15. Kim DK, Kanai Y, Choi HW, Tangtrongsup S, Chairoungdua A, Babu E, Tachampa K, Anzai N, Iribe Y, Endou H. Characterization of the system L amino acid transporter in T24 human bladder carcinoma cells. Biochim Biophys Acta 1565: 112 -122, 2002a https://doi.org/10.1016/S0005-2736(02)00516-3
  16. Babu E, Kanai Y, Chairoungdua A, Kim DK, Iribe Y, Tangtrongsup S, Jutabha P, Li Y, Ahmed N, Sakamoto S, Anzai N, Nagamori S, Endou H. Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J Biol Chem 278: 43838-43845, 2003 https://doi.org/10.1074/jbc.M305221200
  17. Kanai Y, Fukasawa Y, Cha SH, Segawa H, Chairoungdua A, Kim DK, Matsuo H, Kim JY, Miyamoto K, Takeda E, Endou H. Transport properties of a system y$^+$L neutral and basic amino acid transporter: Insights into the mechanisms of substrate recognition. J Biol Chem 275: 20787-20793, 2000 https://doi.org/10.1074/jbc.M000634200
  18. Pfeiffer R, Rossier G, Spindler B, Meier C, Kuhn L, Verrey F. Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18: 49-57, 1999b. https://doi.org/10.1093/emboj/18.1.49
  19. Dello Strologo L, Pras E, Pontesilli C, Beccia E, Ricci-Barbini V, de Sanctis L, Ponzone A, Gallucci M, Bisceglia L, Zelante L, Jimenez-Vidal M, Font M, Zorzano A, Rousaud F, Nunes V, Gasparini P, Palacin M, Rizzoni G. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol 13: 2547-2553, 2002 https://doi.org/10.1097/01.ASN.0000029586.17680.E5
  20. Feliubadalo L, Arbones ML, Manas S, Chillaron J, Visa J, Rodes M, Rousaud F, Zorzano A, Palacin M, Nunes V. SLC7A9-deficient mice develop cystinuria non-I and cystine urolithiasis. Hum Mol Genet 12: 2097-2108, 2003 https://doi.org/10.1093/hmg/ddg228
  21. Gomes P, Soares-da-Silva P. L-DOPA transport properties in an immortalised cell line of rat capillary cerebral endothelial cells, RBE 4. Brain Res 829: 143-150, 1999 https://doi.org/10.1016/S0006-8993(99)01387-6
  22. Kekuda R, Prasad PD, Fei YJ, Torres-Zamorano V, Sinha S, Yang-Feng TL, Leibach FH, Ganapathy V. Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter Bo from a human placental choriocarcinoma cell line. J Biol Chem 271: 18657-18661, 1996 https://doi.org/10.1074/jbc.271.31.18657
  23. Mannion BA, Kolesnikova TV, Lin S-H, Thompson NL, Hemler ME. The light chain of CD98 is identified as E16/TA1 protein. J Biol Chem 273: 33127-33129, 1998 https://doi.org/10.1074/jbc.273.50.33127
  24. Chaundhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH. Molecular analysis of system N suggests novel physiological roles inn nitrogen metabolism and synaptic transmission. Cell 99: 769-780, 1999 https://doi.org/10.1016/S0092-8674(00)81674-8
  25. Duelli R, Enerson BE, Gerhart DZ, Drewes LR. Expression of large amino acid transporter LAT1 in rat brain endothelium. J Cereb Blood Flow Metab 20: 1557-1562, 2000 https://doi.org/10.1097/00004647-200011000-00005
  26. Fukasawa Y, Segawa H, Kim JY, Chairoungdua A, Kim DK, Matsuo H, Cha SH, Endou H, Kanai Y. Identification and characterization of a Na$^+$-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D- and L-amino acids. J Biol Chem 275: 9690-9698, 2000 https://doi.org/10.1074/jbc.275.13.9690
  27. MacLeod CL, Finley KD, Kakuda DK. y$^+$-type cationic amino acid transporter: Expression and regulation of the mCAT genes. J Exp Biol 196: 109-121, 1994
  28. Palacin M, Borsani G, Sebastio G. The molecular bases of cystinuria and lysinuric protein intolerance. Curr Opin Genet Dev 11: 328- 335, 2001 https://doi.org/10.1016/S0959-437X(00)00198-2
  29. Moscow JM Swanson CA, Cowan KH. Decreased melphalan accumulation in a human breast cancer cell line selected for resistance to melphalan. Br J Cancer 68: 732-737, 1993 https://doi.org/10.1038/bjc.1993.419
  30. Arriza JL, Kavanaugh MP, Fairman WA, Wu Y-N, Murdoch GH, North RA, Amara SG. Cloning and expression of a human neutral amino acid transporter with structual similarity to the glutamate transporter gene family. J Biol Chem 268: 15329- 15332, 1993
  31. Palacin M. A new family of proteins (rBAT and 4F2hc) involved in cationic and zwitterionic amino acid transport: a tale of two proteins in search of a transport function. J Exp Biol 196: 123- 137, 1994
  32. Piani D, Fontana A. Involvement of the cystine transport system x-C in the macrophage-induced glutamate-induced cytotoxicity to neurons. J Immunol 152: 3578-3585, 1994
  33. Bertran J, Werner A, Moore ML, Stange G, Markovich D, Biber J, Testar X, Zorzano A, Palacin M, Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci USA 89: 5601-5605, 1992b https://doi.org/10.1073/pnas.89.12.5601
  34. Chillaron J, Estevez R, Mora C, Wagner CA, Suessbrich H, Lang F, Lluis Gelpi J, Testar X, Busch AE, Zorzano A, Palacin M. Obligatory amino acid exchange via systems b,$^{0, +}$-like and y$^+$ L-like: A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem 271: 17761-17770, 1996 https://doi.org/10.1074/jbc.271.30.17761
  35. Deves R, Chavez P, Boyd CA. Identification of a new transport system (y$^+$L) in human erythricytes that recognizes lysine and leucine with high affinity. J Physiol (Lond.) 454: 491-501, 1992 https://doi.org/10.1113/jphysiol.1992.sp019275
  36. Kim JY, Kanai Y, Chairoungdua A, Cha SH, Matsuo H, Kim DK, Inatomi J, Sawa H, Ida Y, Endou H. Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells. Biochim Biophys Acta 1512: 335-344, 2001 https://doi.org/10.1016/S0005-2736(01)00338-8
  37. Nakamura E, Sato M, Yang H, Miyagawa F, Harasaki M, Tomita K, Matsuoka S, Noma A, Iwai K, Minato N. 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem 274: 3009-3016, 1999 https://doi.org/10.1074/jbc.274.5.3009
  38. Bannai S, Kitamura E. Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 255: 2372-2376, 1980
  39. Cornford EM, Young D, Paxton JW, Finlay GJ, Wilson WR, Pardridge WM. Melphalan penetration of the blood-brain barrier via the neutral amino acid transporter in tumor-bearing brain. Cancer Res 52: 138-143, 1992
  40. Hatanaka T, Huang W, Wang H, Sugawara M, Prasad PD, Leibach, FH, Ganapathy V. Primary structure, functional characteristics and tissue expression pattern of human ATA2, a subtype of amino acid transport system A. Biochim Biophys Acta 1467: 1- 6, 2000 https://doi.org/10.1016/S0005-2736(00)00252-2
  41. Billups B, Rossi D, Oshima T, Warr O, Takahashi M, Sarantis M, Szatkowski M, Attwell D. Physiological and pathological operation of glutamate transporters. Prog Brain Res 116: 45-57, 1998 https://doi.org/10.1016/S0079-6123(08)60429-X
  42. Kido Y, Tamai I, Uchino H, Suzuki F, Sai Y, Tsuji A. Molecular and functional identification of large neutral amino acid transporters LAT1 and LAT2 and their pharmacological relevance at the blood-brain barrier. J Pharm Pharmacol 53: 497- 503, 2001 https://doi.org/10.1211/0022357011775794
  43. Peghini P, Janzen J, Stoffel W. Glutamate transporter EAAC-1- deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J 16: 3822- 3832, 1997 https://doi.org/10.1093/emboj/16.13.3822
  44. Pfeiffer R, Loffing J, Rossier G, Bauch C, Meier C, Eggermann T, Loffing-Cueni D, Kuhn L, Verrey F. Luminal heterodimeric amino acid transporter defective in cystinuria. Mol Biol Cell 10: 4135-4147, 1999a https://doi.org/10.1091/mbc.10.12.4135
  45. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273: 23629-23632, 1998 https://doi.org/10.1074/jbc.273.37.23629
  46. Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395: 288-291, 1998 https://doi.org/10.1038/26246
  47. Faris RA, McEntire KD, Thompson NL, Hixson DC. Identification and characterization of a rat hepatic oncofetal membrane glycoprotein. Cancer Res 50: 4755-4763, 1990
  48. Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, Hashida M, Kanai Y, Naito M, Tsuruo T, Minato N, Shimohama S. The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res 879: 115-121, 2000 https://doi.org/10.1016/S0006-8993(00)02758-X
  49. Kanai Y, Hediger MA. Primary structure and functional characterization of high-affinity glutamate transporter. Nature 360: 467-471, 1992 https://doi.org/10.1038/360467a0
  50. Pineda M, Fernandez E, Torrents D, Estevez R, Lopez C, Camps M, Lloberas J, Zorzano A, Palacin M. Identification of a membrane protein, LAT-2, that co-expressed with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem 274: 19738-19744, 1999 https://doi.org/10.1074/jbc.274.28.19738
  51. Font MA, Feliubadalo L, Estivill X, Nunes V, Golomb E, Kreiss Y, Pras E, Bisceglia L, d'Adamo AP, Zelante L, Gasparini P, Bassi MT, George AL Jr., Manzoni M, Riboni M, Ballabio A, Borsani G, Reig N, Fernandez E, Zorzano A, Bertran J, Palacin M. Functional analysis of mutations in SLC7A9, and genotypephenotype correlation in non-Type I cystinuria. Hum Mol Genet 10: 305-316, 2001 https://doi.org/10.1093/hmg/10.4.305
  52. Okuda S, Nishiyama, N, Saito, H, Katsuki, H. 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70: 299-307, 1998 https://doi.org/10.1046/j.1471-4159.1998.70010299.x
  53. Palacin M, Estevez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78: 969-1054, 1998 https://doi.org/10.1152/physrev.1998.78.4.969
  54. Aschner M. Brain, kidney and liver 203Hg-methyl mercury uptake in the rat: relationship to the neutral amino acid carrier. Pharmacol Toxicol 65: 17-20, 1989 https://doi.org/10.1111/j.1600-0773.1989.tb01119.x
  55. Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70: 43-77, 1990 https://doi.org/10.1152/physrev.1990.70.1.43
  56. Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH, Endou H. Expression cloning of a Na$^+$-independent aromatic amino acid transporter with structural similarity to H$^+$/monocarboxylate transporters. J Biol Chem 276: 17221-17228, 2001 https://doi.org/10.1074/jbc.M009462200
  57. Fremeau RT Jr, Caron MG, Blakely RD. Molecular cloning and expression of a high affinity L-proline transporter expressed in putative glutamatergic pathways of rat brain. Neuron 8: 915- 926, 1992 https://doi.org/10.1016/0896-6273(92)90206-S
  58. Leclerc D, Boutros M, Suh D, Wu Q, Palacin M, Ellis JR, Goodyer P, Rozen R. SLC7A9 mutations in all three cystinuria subtypes. Kidney Int 62: 1550-1559, 2002 https://doi.org/10.1046/j.1523-1755.2002.00602.x
  59. Mokrzan EM, Kerper LE, Ballatori N, Clarkson TW. Methylmercurythiol uptake into cultured brain capillary endothelial cells on amino acid system L. J Pharmacol Exp Ther 272: 1277-1284, 1995
  60. Mizoguchi K, Cha SH, Chairoungdua A, Kim DK, Shigeta Y, Matsuo H, Fukushima J, Awa Y, Akakura K, Goya T, Ito H, Endou H, Kanai Y. Human cystinuria-related transporter: localization and functional characterization. Kidney Int 59: 1821 -1833, 2001 https://doi.org/10.1046/j.1523-1755.2001.0590051821.x
  61. Amara SG, Kuhar MJ. Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16: 73-93, 1993 https://doi.org/10.1146/annurev.ne.16.030193.000445
  62. Ballatori, N, Clarkson, TW. Developmental changes in the biliary excretion of methylmercury and glutathione. Science 216: 61- 63, 1982 https://doi.org/10.1126/science.7063871
  63. Chairoungdua A, Kanai Y, Matsuo H, Inatomi J, Kim DK, Endou H. Identification and characterization of a novel member of the heterodimeric amino acid transporter family presumed to be associated with an unknown heavy chain. J Biol Chem 276: 49390-49399, 2001 https://doi.org/10.1074/jbc.M107517200
  64. Gaugitsch HW, Prieschl EE, Kaithoff F, Huber NE, Baumruker T. A novel transiently expressed, integral membrane protein linked to cell activation: Molecular cloning via the rapid degradation signal AUUUA. J Biol Chem 267: 11267-11273, 1992
  65. Kim JW, Closs EI, Albritton LM, Cunningham JM. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352: 725-728, 1991 https://doi.org/10.1038/352725a0
  66. Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI. Cloning and expression of a rat brain L-glutamate transporter. Nature 360: 464-467, 1992 https://doi.org/10.1038/360464a0