DOI QR코드

DOI QR Code

Intercalation of Vitamer into LDH and Their Controlled Release Properties

  • Choy, Jin-Ho (National Nanohybrid Materials Laboratory, School of Chemistry and Molecular Engineering, Seoul National University) ;
  • Son, You-Hwan (National Nanohybrid Materials Laboratory, School of Chemistry and Molecular Engineering, Seoul National University)
  • Published : 2004.01.20

Abstract

Biofunctional nanohybrids are synthesized from layered double hydroxide (LDH) and the vitamins such as ascorbic acid and topopherol acid succinate. Either ion exchange or copricipitaion leads to successful intercalation of the vitamins into gallery space of LDH that offers a new route to safe preservation of bioactivity as well as controlled release. Intercalations of vitamins are clearly reflected on the increase in the basal spacing of ZnAl-(Nitrate) LDH from 8.5 ${\AA}$ to 10.5 ${AA}$ for ascorbate, and 49.0 ${AA}$ for tocopherol acid succinate, respectively. No significant change in UV-Vis and IR absorption characteristics of the intercalated vitamins strongly supports the safe maintenance of their bioactivities without any deterioration of chemical and structural integrity. Furthermore, it is shown that the hybridized vitamins could be discharged in a controlled kinetics.

References

  1. McLaren, M.; Niesz, D. E. An Introduction to Bioceramics;Advanced Series in Ceramics; World scientific publishing Co.Ltd: 1993; Vol. 1.
  2. Ravaglioli, A.; Krajewski, A. Bioceramics-Materials, Properties,Application; Chapman & Hall: 1992.
  3. Mann, S. Biomimetic Materials Chemistry; VCH publisher: New York, U.S.A., 1996.
  4. Mann, S.; Robert, J. W.; Williams, J. P. Biomineralization-Chemical and Biochemical Perspectives; VCH publisher: NewYork, U.S.A., 1989.
  5. Ozin, G. A. Adv. Mater. 1992, 4, 612. https://doi.org/10.1002/adma.19920041003
  6. Choy, J. H.; Kwon, S. J.; Park, G. S. Science 1998, 280, 1589. https://doi.org/10.1126/science.280.5369.1589
  7. Choy, J. H.; Park, N. G.; Hwang, S. J.; Kim, D. H.; Hur, N. H. J. Am. Chem. Soc. 1994, 116, 11564. https://doi.org/10.1021/ja00104a045
  8. Sels, B.; Vos, D. D.; Buntix, M.; Pierard, F.; Mesnaeker, A. K.;Jacobs, P. Nature 1999, 400, 855. https://doi.org/10.1038/23674
  9. Cavani, F.; Trifiro, E.; Vaccari, A. Catal. Today 1991, 11, 173. https://doi.org/10.1016/0920-5861(91)80068-K
  10. Martina, M.; Klaus, B.; Gerhard, L. Inorg. Chem. 1990, 29, 5201. https://doi.org/10.1021/ic00351a013
  11. Hibino, T.; Tsunashima, A. Chem. Mater. 1998, 10, 4055. https://doi.org/10.1021/cm980478q
  12. Taniguchi, K.; Nakata, M.; Takahashi, M.; Yamagishi, A.Langmuir 1998, 14, 2401.
  13. Choy, J. H.; Kawk, S. Y.; Jeong, Y. J.; Park, J. S. Angew. Chem Int.Ed. Elgl. 2000, 39, 4042.
  14. Fardella, G.; Grandolini, G.; Ambrogi, V.; Chiappini, I. ActaTechol. Legis Med. 1997, 8, 125.
  15. Fardella, G.; Grandolini, G.; Ambrogi, V.; Chiappini, I. ActaTechol. Legis Med. 1997, 8, 153.
  16. Miyata, S. Clays and Clay Minerals 1983, 31, 305. https://doi.org/10.1346/CCMN.1983.0310409
  17. Dewick, P. Medicininal Natural products, 2nd Ed.; Wiley: NewYork, U.S.A., 2001.
  18. Barriga, C.; Jones, W.; Malet, P.; Rives, V.; Ulibarri, M. A. Inorg.Chem. 1998, 37, 1812. https://doi.org/10.1021/ic9709133
  19. Khan, A. I.; Lei, L.; Norguist, A. J.; Ohare, D. Chem. Commun.2001, 2342.
  20. Yun, S. K.; Pinnavaia, T. J. Chem. Mater. 1995, 7, 348. https://doi.org/10.1021/cm00050a017
  21. Hwang, S. H.; Han, Y. S.; Choy, J. H. Bull. Korean Chem. Soc.2001, 22, 1019.
  22. Yang, J. H.; Lee, S. Y.; Han, Y. S.; Park, K. C.; Choy, J. H. Bull.Korean Chem. Soc. 2003, 24, 499. https://doi.org/10.1007/s11814-007-0087-6
  23. Pouchert, C. J. The Aldrich Library of Infrared Spectra, 2nd Ed.;Aldrich Chemical: Milwaukee, U.S.A., 1975.
  24. Nicola, T.; Whilton, J. P.; Vickers, J.; Mann, S. J. Mater. Chem.1997, 7, 1623. https://doi.org/10.1039/a701237c
  25. Kasha, M. In Spectroscopy of Excited State; Plenum Press: NewYork, U.S.A., 1976.
  26. Kunitake, T. Angew. Chem. Int. Ed. Engl. 1992, 31, 709. https://doi.org/10.1002/anie.199207091
  27. Counsell, J. N.; Hornig, D. H. Vitamin C or Ascorbic Acid;Applied Science: London, U.K., 1981.

Cited by

  1. Ceramic nanovector based on layered double hydroxide: attributes, physiologically relevant compositions and surface activation vol.11, pp.3, 2007, https://doi.org/10.1179/143307507X225579
  2. Recent advances in large-scale atomistic and coarse-grained molecular dynamics simulation of clay minerals vol.19, pp.17, 2009, https://doi.org/10.1039/b820445d
  3. A Lattice-Engineering Route to Heterostructured Functional Nanohybrids vol.6, pp.2, 2010, https://doi.org/10.1002/asia.201000578
  4. Layered Double Hydroxides Based Ceramic Nanocapsules as Reservoir and Carrier of Functional Anions vol.69, pp.3, 2010, https://doi.org/10.1080/0371750X.2010.11090832
  5. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market vol.40, pp.2, 2011, https://doi.org/10.1039/c0cs00136h
  6. Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity vol.6, pp.5, 2011, https://doi.org/10.2217/nnm.11.86
  7. Ketoprofen-LDH Nanohybrid for Transdermal Drug Delivery System vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.1827
  8. Organic-Inorganic Hybrids Based on Ultrathin Oxide Layers: Designed Nanostructures for Molecular Recognition vol.7, pp.9, 2012, https://doi.org/10.1002/asia.201101015
  9. Structural characterization and thermal and chemical stability of bioactive molecule–hydrotalcite (LDH) nanocomposites vol.15, pp.32, 2013, https://doi.org/10.1039/c3cp51235e
  10. Evidence of the influence of the cationic composition on the anionic affinity of layered double hydroxides vol.48, pp.15, 2013, https://doi.org/10.1007/s10853-013-7318-5
  11. Encapsulation of 2,4-Dihydroxybenzophenone into Dodecylbenzenesulfonate Modified Layered Double Hydroxide for UV Absorption Properties vol.35, pp.2, 2014, https://doi.org/10.5012/bkcs.2014.35.2.392
  12. Effect of biotechnologically modified alginates on LDH structures vol.4, pp.3, 2015, https://doi.org/10.1680/jbibn.14.00032
  13. Modified hydrotalcites for improved corrosion protection of reinforcing steel in concrete - preparation, characterization, and assessment in alkaline chloride solution vol.67, pp.7, 2015, https://doi.org/10.1002/maco.201508618
  14. Theranostic Bioabsorbable Bone Fixation Plate with Drug-Layered Double Hydroxide Nanohybrids vol.5, pp.21, 2016, https://doi.org/10.1002/adhm.201600761
  15. Enabling Nanohybrid Drug Discovery through the Soft Chemistry Telescope vol.55, pp.43, 2016, https://doi.org/10.1021/acs.iecr.6b02971
  16. Hybrid nanocomposites of layered double hydroxides: an update of their biological applications and future prospects vol.295, pp.5, 2017, https://doi.org/10.1007/s00396-017-4047-3
  17. Nanoceramics-Biomolecular Conjugates for Gene and Drug Delivery vol.45, pp.1662-0356, 2006, https://doi.org/10.4028/www.scientific.net/AST.45.769
  18. Application of a novel, efficient and recyclable photo redox catalyst (Zn-Al layered double hydroxide/eosin) for the synthesis of substituted pyridine derivatives under visible light irradiation pp.02682605, 2018, https://doi.org/10.1002/aoc.4585
  19. 2D Nanostructured Metal Hydroxides with Gene Delivery and Theranostic Functions; A Comprehensive Review vol.18, pp.7-8, 2018, https://doi.org/10.1002/tcr.201700091
  20. Towards understanding, control and application of layered double hydroxide chemistry vol.16, pp.30, 2006, https://doi.org/10.1039/b604895a
  21. Layered nanomaterials for green materials vol.19, pp.17, 2009, https://doi.org/10.1039/b819094a