DOI QR코드

DOI QR Code

Sizes and Structures of Micelles of Cationic Octadecyl Trimethyl Ammonium Chloride and Anionic Ammonium Dodecyl Sulfate Surfactants in Aqueous Solutions

  • Published : 2004.03.20

Abstract

The sizes and structures of micelles formed in aqueous solutions of cationic octadecyl trimethyl ammonium chloride (OTAC) and anionic ammonium dodecyl sulfate (ADS) surfactants were investigated using smallangle neutron scattering (SANS), self-diffusion coefficients by pulsed-gradient spin-echo (PGSE) NMR, and dynamic light scattering (DLS) methods. SANS and DLS data indicate that their structures are spherical at concentrations as high as 300 mM. As the total surfactant concentration increases, the peaks of SANS spectra shift to higher scattering vector and become sharper, indicating that the intermicellar distance decreases and its distribution becomes narrower. This is due to more compact packing of surfactant molecules at high concentrations. The intermicellar distance of around 100 ${\AA}$ above 200 mM corresponds approximately to the diameter of one micelle. The sizes of spherical micelles are 61 ${\AA}$ and 41 ${\AA}$ for 9 mM OTAC and 10 mM ADS, respectively. Also the self-diffusion coefficients by PGSE-NMR yield the apparent sizes 96 ${\AA}$ and 31 ${\AA}$ for micelles of 1 mM OTAC and 10 mM ADS, respectively. For ADS solutions of high concentrations (100-300 mM), DLS data show that the micelle size remains constant at $25{\pm}2{\AA}$. This indicates that the transition in micellar shape does not take place up to 300 mM, which is consistent with the SANS results.

Keywords

Ammonium dodecyl sulfate (ADS);Octadecyl trimethyl ammonium chloride (OTAC);Smallangle neutron scattering (SANS);Pulsed-gradient spin-echo (PGSE)-NMR;Intermicellar distance

References

  1. Benedough, D.; Chen, S.-H.; Koeler, W. C. J. Phys. Chem. 1983,87, 2621. https://doi.org/10.1021/j100237a030
  2. Guinier, A.; Fournet, G. In Small-Angle Scattering of X-Rays;John Wiley & Sons: New York, 1955.
  3. Lindman, B.; Olsson, U.; Soderman, O. In Handbook of MicroemulsionScience and Technology; 1998; Ch.10, pp 309-356.
  4. Walderhaug, H.; Nystrom, B. Colloid Surf. A 1999, 149, 379. https://doi.org/10.1016/S0927-7757(98)00415-4
  5. Annunziata, O.; Costantino, L.; D'Errico, G.; Paduano, L.;Vitagliano, V. J. Colloid Interface Sci. 1999, 216, 16. https://doi.org/10.1006/jcis.1999.6269
  6. Tanford, C. J. Phys. Chem. 1974, 78, 2469. https://doi.org/10.1021/j100617a012
  7. Armarego, W. L. F.; Perrin, D. D. In Purification of LaboratoryChemicals, 4th ed.; Butterworth-Heinemann: Oxford, 1996.
  8. Porod, G. In Small-Angle X-Ray Scattering; Glatter, O.; Kratky,O., Ed.; Academic Press: New York, 1982; p 17.
  9. Courchene, W. L. J. Phys. Chem. 1964, 68, 1870. https://doi.org/10.1021/j100789a034
  10. Misselyn-Bauduin, A.-M.; Thibaut, A.; Grandjean, J.; Broze, G.;Jerome, R. J. Colloid Interface Sci. 2001, 238, 1. https://doi.org/10.1006/jcis.2001.7451
  11. Lin, M. Y.; Hanley, H. J. M.; Sinha, S. K.; Straty, G. C.; Peiffer, D.G.; Kim, M. W. Physica B 1995, 213-214, 613. https://doi.org/10.1016/0921-4526(95)00228-2
  12. Cabane, B.; Duplessix, R.; Zemb, T. J. Phys. 1985, 46, 2161. https://doi.org/10.1051/jphys:0198500460120216100
  13. Grabner, D.; Matsuo, T.; Hoinkis, E.; Thunig, C.; Hoffmann, H. J.Colloid Interface Sci. 2001, 236, 1. https://doi.org/10.1006/jcis.2000.7388
  14. Korea Atomic Energy Research Institute, In Computing Guide forHanaro Small-Angle Scattering Data Treatment, 2002.
  15. Pedersen, J. S.; Egelhaaf, S. U.; Schurtenberger, P. J. Phys. Chem.1995, 99, 1299. https://doi.org/10.1021/j100004a033
  16. Walther, K. L.; Gradzielski, M.; Hoffmann, H.; Wakaun, A. J.Colloid Interface Sci. 1992, 153, 272. https://doi.org/10.1016/0021-9797(92)90318-G
  17. Bruker Co., Almanac, 2001; p 72.
  18. Iwadare, Y.; Suzawa, T. Nippon Kagaku Zasshi 1969, 90, 1106. https://doi.org/10.1246/nikkashi1948.90.11_1106
  19. Caria, A.; Regev, O.; Khan, A. J. Colloid Interface Sci. 1998, 200,19. https://doi.org/10.1006/jcis.1997.5310
  20. Reiss-Husson, F.; Luzzati, V. J. Phys. Chem. 1964, 86, 3504.
  21. Braun, S.; Kalinowski, H.-O.; Berger, S. In 100 and More BasicNMR Experiments; A Practical Course; VCH: 1999; Ch.11, pp349-351.
  22. Weingartner, H. Z. Phys. Chem. (Neue Folge) 1982, 132, 129. https://doi.org/10.1524/zpch.1982.132.2.129
  23. Forland, G. M.; Sameth, J.; Gjerde, M. I.; Hfiland, H.; Jensen, A.F.; Mortensen, K. J. Colloid Interface Sci. 1998, 203, 328. https://doi.org/10.1006/jcis.1998.5539
  24. Chevalier, Y.; Chachaty, C. Colloid Polym. Sci. 1984, 262, 489. https://doi.org/10.1007/BF01412046
  25. Kang, K.-H.; Kim, H.-U.; Lim, K.-H. Colloid Surf. A 2001, 189,113. https://doi.org/10.1016/S0927-7757(01)00577-5
  26. Holtzer, A. J. Polym. Sci. 1995, 17, 432. https://doi.org/10.1002/pol.1955.120178515
  27. Israelachvili, J. N. In Intermolecular and Surface Forces, 2nd Ed.;Academic Press: London, 1991.
  28. Jonsson, B.; Lindmann, B.; Holmberg, K.; Kronberg, B. InSurfactants and Polymers in Aqueous Solutions; John Wiley andSons: New York, 1997; pp 84-100.
  29. Feigin, L. A.; Svergun, D. I. In Structure Analysis by Small-AngleX-Ray and Neutron Scattering; Taylor, G. W., Ed.; Plenum Press:New York and London, 1987; pp 68-69.
  30. Denkinger, P.; Burchard, W. J. Polym. Sci. B, Polym. Phys. 1991,29, 589. https://doi.org/10.1002/polb.1991.090290508
  31. Holz, M.; Weingartner, H. J. Magn. Reson. 1991, 92, 115.
  32. Kim, H.-U. Ph.D Dissertation; Chung-Ang University: Korea, 2002.
  33. Kim, H. U. Ph. D. Dissertation; Chung-Ang University: Seoul,Korea, 2002; p166.
  34. Kato, T. J. Phys. Chem. 1985, 89, 5750. https://doi.org/10.1021/j100272a035

Cited by

  1. Foaming in Micellar Solutions: Effects of Surfactant, Salt, and Oil Concentrations vol.53, pp.48, 2014, https://doi.org/10.1021/ie503591v
  2. Liquid Polyamorphous Transition and Self-Organization in Aqueous Solutions of Ionic Surfactants vol.31, pp.31, 2015, https://doi.org/10.1021/acs.langmuir.5b00479
  3. SYNTHESIS AND CHARACTERIZATION O F SODIUM METHYL ESTER SULFONATE FOR CHEMICALLY-ENHANCED OIL RECOVERY vol.32, pp.3, 2015, https://doi.org/10.1590/0104-6632.20150323s00003642
  4. Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis vol.12, pp.39, 2016, https://doi.org/10.1039/C6SM01791F
  5. Synthesis and characterization of a new polymeric surfactant for chemical enhanced oil recovery vol.33, pp.2, 2016, https://doi.org/10.1007/s11814-015-0186-8
  6. Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants vol.144, pp.23, 2016, https://doi.org/10.1063/1.4954063