Expression of Clostridium thermocellum Endoglucanase Gene in Lactobacillus bulgaricus and Lactobacillus plantarum and in vitro Survival Characteristics of the Transformed Lactobacilli

Lactobacillus bulgaricus와 Lactobacillus plantarum 균주에서 Clostridium thermocellum 유래 endoglucanase의 발현과 발현 유산균의 in vitro 생존 특성

  • Cho, J.S. (School of agricultural biotechnology, Seoul National University) ;
  • Kang, S.H. (School of agricultural biotechnology, Seoul National University) ;
  • Lee, H.G. (School of agricultural biotechnology, Seoul National University) ;
  • Lee, H.J. (National Livestock Research Institute, RDA) ;
  • Woo, J.H. (Laboratory of Molecular Biology, National Institute of Mental Health) ;
  • Moon, Y.S. ;
  • Yang, C.J. (Department of Animal Science and Biotechnology, Jinju National University) ;
  • Choi, Y.J. (Department of Animal Science and Technology, Sunchon National University)
  • 조재순 (서울대학교 농생명공학부) ;
  • 강승하 (서울대학교 농생명공학부) ;
  • 이홍구 (서울대학교 농생명공학부) ;
  • 이현준 (농촌진흥청 축산기술연구소) ;
  • 우정희 (미국 메릴렌드주 국립보건원) ;
  • 문양수 (진주산업대학교 동물생명과학과) ;
  • 양철주 (순천대학교 동물자원과학과) ;
  • 최윤재 (서울대학교 농생명공학부)
  • Published : 2003.08.30


Endoglucanase A from Clostridium thermocellum which is resistant to pancreatic proteinase was selected out of numbers cellulases then were expressed in lactobacilli. Recombinant lactobacilli expression vector, pSD1, harboring the endoglucanase gene from C. thermocellum under the control of its own promoter, was constructed. Both L. bulgaricus and L. plantarum were electrotransformed with pSD1. The endoglucanase activities of 0.120 and 0.144 U/ml were found in culture media of L. bulgaricus and L. plantarum containing pSD1, respectively. In vitro survival characteristics of the transformed lactobacilli were tested. Both L. bulgaricus and L. plantarum showed a similar resistance to low pH 3. Moreover, L. plantarum was bile-salt resistant in the presence of 0.3 and 1% oxgall. L. bulgaricus and L. plantarum showed a rather homogenous resistant pattern against the tested antibiotics. Both of the strains were resistant to amikacin, gentamicin, streptomycin, kanamycin, and colistin.


Endoglucanase activity;Clostridium thermocellum;Survival of Lactobacilli


  1. Abe, F., Ishibashi, N. and Shimamura, S. 1995. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78:2838-2846.
  2. Bates, E. M., Gilbert, H. J., Hazzlewood, G. P., Huckle, J., Laurie, J. I. and Mann, S. P. 1989. Expression of a Clostridium thermocellum endoglucanase in Lactobacillus plantarum. Appl. Environ. Microbiol. 55:2095-2097.
  3. Beguin, P., Cornet, P. and Aubert, J. P. 1985. Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162:102-105.
  4. Bradford, M. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
  5. Casadaban, M. and Cohen, S. N. 1980. Analysis of gene control signals by fusion and cloning in Escherichia. J. Mole Biol. 138:179-207.
  6. Charteris, W. P., Kelly, P. M., Morelli, L. and Collins, J. K. 1998a. Antibiotic susceptibility of potentially probiotic Lactobacillus species. J. Food Prot. 61:1636-1643.
  7. Charteris, W. P., Kelly, P. M., Morelli, L. and Collins, J. K. 1998b. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and bifidobacterium species in the upper human gastrointestinal tract. J. Appl Microbiol. 84:759-768.
  8. Conway, P. L., Gorbach, S. L. and Goldin, B. R. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70:1-12.
  9. Cornet, P., Miller, J., Beguin, P. and Aubert, J. P. 1983. Characterization of two cel(cellulose degradation) genes of Clostridium thermocellum coding for endoglucanases. Biotech. 1:589-594.
  10. de Vos, W. M., Siezen, R. J. and Kuipers, O. P. 1992. Lantibiotics similar to nisin A. PCT Patent Application WO, 92/18633.
  11. Dutta, G. N. and Devriese, L. A. 1981. Sensitivity and resistance to growth promoting agents in animal lactobacilli. J. Appl Bacteriol. 51:283-287.
  12. Fujino, T. and Ohmiya, K. 1991. Cloning of the cel B gene encoding 1,4-${\beta}$-glucanase-2 from Clostridium josui in Escherichia coli and the properties of the translated product. Appl. Environ. Microbiol. 72:422-425.
  13. Gillinand, S. E. and Speck, M. L. 1977. Antagonistic action of Lactobacillus acidophilus forward intestinal and foodborne pathogens in associative culture. J. Food Prot. 40:820-823.
  14. Hall, J., Ali, S., Surani, M. A., Hazlewood, G. P., Clark, A. J., Simon, J. P., Hilst, B. H. and Gilbert, H. J. 1993. Manipulation of the repertoire of digestive enzymes secreted into the gastrointestinal tract of transgenic mice. Biotech. 11:376-379.
  15. Heng, N. C. K., Jenkinson, H. F. and Tannock, G. W. 1997. Cloning and expression of an endo-1,3-1,4-${\beta}$-glucanase gene from Bacillus macerans in L actobacilli reuteri. Appl. Environ. Microbiol. 63:3336-3340.
  16. Klein, G., Pack, A., Bonaparte, C. and Reuter, G. 1998. Taxonomy and physiology of probiotic lactic acid bacteria. Int. J. Food Microbiol. 41:103-125.
  17. Maniatis, T., Fritsch, E. F. and Sambrook, J. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  18. Miller, G. L, Blum, R., Glennon, W. E. and Burton, A. L. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 1:127-132.
  19. Min, H. K., Choi, Y. J., Cho, K. K., Ha, J.K. and Woo, J. H. 1994. Cloning of the endoglucanase gene from Actinomyces sp. 40 in Escherichia coli and some properties of the gene products. J. Microbiol. Biotech. 4:102-107.
  20. Nemcova, R., Laukova, A., Gancarcikova, S. and Kastel, R. 1997. In vitro studies of porcine lactobacilli for probiotic use. Berl Munch Tierarztl Wochenschr 110:413-417.
  21. O’Sullivan, D. J. and Klaenhammer, T. R. 1993. Rapid mini-prep isolation of high quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl. Environ. Microbiol. 59:2730-2733.
  22. Petre, J., Longin, R. and Miller, J. 1981. Purification and properties of an endo-${\beta}$-1,4-glucanase from Clostridium thermocellum. Biochime 63:629-639.
  23. Scheirlinck, T., de Meutter, J., Arnaut, G., Joos, H., Claeyssens, M. and Michiels, F. 1990. Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum. Appl. Microbiol. Biotech. 33:534-541.
  24. Tannock, G. W. 1992. Genetic manipulation of gut microorgainsm. In: Fuller P(eds) Probiotics. London, United kingdom, the scientific basis Chapman & Hall, p181-207.
  25. Teather, R. M. and Erfle, J. D. 1990. DNA sequence of a Fibrobacter succinogens mixed-linkage glucanase gene. Appl. Environ. Microbiol. 172:3837-3841.
  26. Teather, R. M. and Wood, P. J. 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43:777-780.
  27. Toit, M. D., Franz, C. M. A. P., Dicks, L. M. T., Schillinger, U., Haberer, P., Warlies, B., Ahrens, F. and Holzapfel, W. H. 1998. Chracterisation and selection of probiotic lactobacilli for preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int. J. Food Microbiol. 40:93-104.
  28. Woo, J. H. 1995. Gene cloning and biochemical chracterization of cellulase and xylanase from anaerobic rumen bacteria. Korea. Ph.D. Thesis. p67-77.