DOI QR코드

DOI QR Code

Evaluation of Recombinant Human Lactoferricin Culture as a Substitute for Antibiotic in Pig Starter Diets

이유자돈사료에 항생제를 대체하기 위한 재조합 인간 락토페리신 컬처의 평가

  • Hong, J.W. (Department of Animal Resource & Sciences, Dankook University) ;
  • Kim, I.H. (Department of Animal Resource & Sciences, Dankook University) ;
  • Hwang, I.H. (Easy-Bio System, Inc.) ;
  • Lee, J.H. (Easy-Bio System, Inc.) ;
  • Kim, J.H. (Agribrands Purina Korea, Inc.) ;
  • Kwon, O.S. ;
  • Lee, S.H. (Department of Animal Resource & Sciences, Dankook University)
  • 홍종욱 (단국대학교 동물자원과학과) ;
  • 김인호 (단국대학교 동물자원과학과) ;
  • 황일환 ((주)이지바이오시스템) ;
  • 이지훈 ((주)이지바이오시스템) ;
  • 김지훈 ((주)애그리브랜드 퓨리나 코리아) ;
  • 권오석 (단국대학교 동물자원과학과) ;
  • 이상환 (단국대학교 동물자원과학과)
  • Published : 2003.08.30

Abstract

Sixty [(Duroc${\times}$Yorkshire)${\times}$Landrace] pigs (7.63$\pm$0.41kg average body weight and 25-d average age) were used in a 20-d growth assay to determine the effect of dietary recombinant human lactoferricin culture (RHLC) supplementation on growth performance, digestibility and plasma IgG concentration in weaning pigs. Dietary treatments included 1) Negative control (NC : without antibiotic), 2) Positive control (PC : NC diet + 0.1% chlortetracycline), 3) RHLC0.3 (NC diet + 0.3% RHLC), 4) RHLC0.5 (NC diet + 0.5% RHLC). No differences were found among treatments in average daily gain (P>0.05). ADFI of pigs fed RHLC0.3 diet was higher than that of pigs fed PC diet (P<0.05). However, pigs fed RHLC0.5 diet had improved gain/feed compared to pigs fed PC diet. Pigs fed PC and RHLC diets showed significantly increased dry matter digestibility compared to pigs fed NC diet (P<0.05). There was no significant difference in plasma IgG concentrations (P>0.05). The supplementation of RHLC in starter pig diets appears to be an alternative to antibiotics.

Keywords

Recombinant human lactoferricin culture;Antibiotic-free diet;Pigs

References

  1. Aguila, A., Herrera, A. G., Morrison, D., Cosgrove, B., Perojo, A., Montesinos, I., Perez, J., Sierra, G., Gemmell, C. G. and Brock, J. H. 2001. Bacteriostatic activity of human lactoferrin against Staphylococcus aureus is a function of its iron-binding properties and is not influenced by antibiotic resistance. FEMS Immun. Med. Microbiol. 31:145-152. https://doi.org/10.1111/j.1574-695X.2001.tb00511.x
  2. AOAC. 1995. Official method of analysis. 16th Edition. Association of Official Analytical Chemists, Washington, DC.
  3. Arnold, R. R., Cole, M. F. and McGhee, J. R. 1977. A bactericidal effect for human lactoferrin. Science. 197:263-265. https://doi.org/10.1126/science.327545
  4. Choi, Y. J., Moon, T. H., Sung, C. G., Bok, J. D., Shin, M. S., Yang, J. C., Joo, I. S. and Woo, M. S. 1999. Kor. Patent 1019990045291.
  5. Crouch, S. P., Slater, K. J. and Fletcher, J. 1992. Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood. 80:235-240.
  6. Davidson, L. A. and Lonnerdal, B. 1989. Fe-saturation and proteolysis of human lactoferrin: effect on brushborder receptor-mediated uptake of Fe and Mn. Am. J. Physiol. 257:930-934.
  7. Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics. 11, 1. https://doi.org/10.2307/3001478
  8. Ellison, R. T., Giehl, T. J. and LaForce, F. M. 1988. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 56:2774-2781.
  9. Ellison, R. T., LaForce, F. M., Giehl, T. J., Boose, D. S. and Dunn, B. E. 1990. Lactoferrin and trans ferrin damage of the gram-negative outer membrane is modulated by $Ca^{2+}\;and\;Mg^{2+}$. J. Gen. Microbiol. 136:1437-1446. https://doi.org/10.1099/00221287-136-7-1437
  10. Ellison, R. T. and Giehl, T. J. 1991. Killing of gramnegative bacteria by lactoferrin and lysozyme. J. Clin. Invest. 88:1080-1091. https://doi.org/10.1172/JCI115407
  11. Hangoc, G., Falkenburg, J. H. and Broxmeyer, H. E. 1991. Influence of T-lymphocytes and lactoferrin on the survival-promoting effects of IL-1 and IL-6 on human bone marrow granulocyte-macrophage and erythroid progenitor cells. Exp. Hematol. 19:697-703.
  12. He, J. and Furmanski, P. 1995. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature. 373:721-724. https://doi.org/10.1038/373721a0
  13. Iyer, S. and Lonnerdal, B. 1993. Lactoferrin, lactoferrin receptors and iron metabolism. Eur. J. Clin. Nutr. 47:232-241.
  14. Kunin, C. M. 1993. Resistance to antimicrobial drugs. Ann. Intern. Med. 118:557-561. https://doi.org/10.7326/0003-4819-118-7-199304010-00011
  15. Lee, W. J., Farmer, J. L., Hilty, M. and Kim, Y. B. 1998. The protective effects of lactoferrin feeding against endotoxin lethal shock in germfree piglets. Infect. Immun. 66:1421-1426.
  16. Machnicki, M., Zimecki, M. and Zagulski, T. 1993. Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo. Int. J. Exp. Pathol. 74:433-439.
  17. Nemet, K. and Simonovits, I. 1985. The biological role of lactoferrin. Haematologia. 18:3-12.
  18. Nichols, B. L., McKee, K. S. and Huebers, H. A. 1990. Iron is not required in the lactoferrin stimulation of thymidine incorporation into the DNA of rat crypt enterocytes. Pediatr. Res. 27:525-528. https://doi.org/10.1203/00006450-199005000-00022
  19. Nichols, B. L., McKee, K. S., Henry, J. F. and Putman, M. 1987. Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatr. Res. 21:563-567. https://doi.org/10.1203/00006450-198706000-00011
  20. National Research Council. 1998. Nutrient Requirements of Swine. 10th Edition. National Academy Press, Washington, DC.
  21. Penco, S., Pastorino, S., Bianchi-Scarra, G.. and Garre, C. 1995. Lactoferrin down-modulates the activity of the granulocyte macrophage colonystimulating factor promoter in interleukin-1 beta-stimulated cells. J. Biol. Chem. 270:12263-12268. https://doi.org/10.1074/jbc.270.20.12263
  22. Reiter, B. 1978. Review of nonspecific antimicrobial factors in colostrums. Ann. Rech. Vet. 9:205-224.
  23. Reiter, B. 1983. The biological significance of lactoferrin. Int. J. Tissue React. 5:87-96.
  24. SAS. 1996. SAS user’s guide. Release 6.12 edition. SAS Institute. Inc., Cary, NC.
  25. Sawatzki, G.. and Rich, I. N. 1989. Lactoferrin stimulates colony stimulating factor production in vitro and in vivo. Blood Cells. 15:371-385.
  26. Spik, G., Cheron, A., Montreuil, J. and Dolby, J. M. 1978. Bacteriostasis of a milk-sensitive strain of Escherichia coli by immunoglobulins and iron-binding proteins in association. Immunology. 35:663-671.
  27. van de Ligt, J. L. G., Lindemann, M. D., Harmon, R. J., Monegue, H. J. and Cromwell, G. L. 2002. Effect of chromium tripicolinate supplementation on porcine immune response during the periparturient and neonatal period. Anim. Sci. 80:456-466. https://doi.org/10.2527/2002.802456x
  28. Yamauchi, K., Tomita, M., Giehl, T. J. and Ellison, R. T. 1993. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61:719-728.

Cited by

  1. Effects of CS682, a Fermentation Product of Korean Soil Bacteria, on Growth Performance in Chickens and Pigs vol.20, pp.2, 2010, https://doi.org/10.5352/JLS.2010.20.2.231
  2. Dose–response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers vol.108, pp.10, 2012, https://doi.org/10.1017/S0007114511007240