A Missense Mutation in Exon 5 of the Bovine Growth Hormone Gene

소 성장호르몬 유전자의 Exon 5번에서의 새로운 다형성 연구

  • Yoon, D. H. (National Livestock Research Institute, R.D.A.) ;
  • Kim, T. H. (National Livestock Research Institute, R.D.A.) ;
  • Lee, K. H. (National Livestock Research Institute, R.D.A.) ;
  • Park, E. W. (National Livestock Research Institute, R.D.A.) ;
  • Lee, H. K. (Department of Genomic Engineering, Hankyoung National University) ;
  • Cheong, I. C. (National Livestock Research Institute, R.D.A.) ;
  • Hong, K. C. (Department of College of Life & Environmental Science)
  • 윤두학 (농촌진흥청 축산기술연구소) ;
  • 김태헌 (농촌진흥청 축산기술연구소) ;
  • 이경희 (농촌진흥청 축산기술연구소) ;
  • 박응우 (농촌진흥청 축산기술연구소) ;
  • 이학교 (한경대학교 생명공학과) ;
  • 정일정 (농촌진흥청 축산기술연구소) ;
  • 홍기창 (고려대학교 생명유전공학부)
  • Published : 2003.02.28


Growth Hormone (GH) gene is a member of gene family through the evolutionary process from a small common ancestral gene by a series of gene duplications. The role of the GH in growth and performance controls has been extensively studied in human, mice and livestock. Many researchers have considered GH as a strong candidate gene for evaluation of genetic polymorphisms that could be associated with economic traits in cattle. We report here a novel missense mutation within the exon 5 of the bovine Growth Hormone (bGH) gene. We could amplified 522 bp fragments from eight unrelated Hanwoo cattle by PCR, then, subsequently cloned and sequenced. An Msp I RFLP corresponding to a C to T transition was observed at position 2258 nt. From this result, we could predict a missense mutation (Arg to Trp) at codon 166 in a highly conserved region among many mammals. Codominant Mendelian segregation of the two alleles, Msp I (+) and Msp I (-), was observed in two full-sib F2 families (n = 32, African taurine Bos taurus ${\times}$ African zebu Bos indicus) and eight half-sib Hanwoo families. For the availability of genetic marker, we have performed PCR-RFLP with a large number of individual animals from 15 different cattle breeds (European and Asian taurines, and African indicines). Consideration of breed frequencies of Msp I (-) allele in relation to breed type and their geographic origins, shows higher frequencies in humped breeds or Asian cattle breeds than in humpless or European breeds. This result indicates that the missense mutation can be contributed the functional significance such as the signal transduction through the receptor binding, also may be used as a marker for selection of the economic traits in Hanwoo.


Bovine Growth Hormone Gene;PCR-RFLP;Missense mutation


  1. Adikins, R. M., Nekrutenko, A. and Li, W. H. 2001. Bushbaby Growth Hormone Is Much More Similar to Nonprimate Growth Hormones than to Rhesus Monkey and Human Growth Hormones. Mol. Biol. Evol. 18(1):55-60.
  2. Beckman, J. S., Kashi, Y., Hallerman, E. M., Nave, A. and Soller, M. 1986. Restriction fragment length polymorphism among Israeli Holstein-Friesian dairy bulls. Anim. Genet. 17:25.
  3. Catt, K. J., Moffat, B. and Niall, H. D. 1967. Human Growth Hormone and Placental Lactogen: Structural Similarity. Science 157:321.
  4. Chikuni, K., Terada, F., Kageyama, S., Koishi- kawa, T., Kato, S. and Ozutsumi, K. 1991. Indentification of DNA sequence Variants for Amino Acid Residue 127 of Bovine Growth Hormone using the Polymerase Chain Reaction Method. Anim. Sci. Technol. (Jpn.) 62(7):660-666.
  5. Chikuni, K., Nagatsuma, T., Tabata, T., Monma, M., Saito, M., Ozawa, S. and Ozutsumi, K. 1994. Genetic Variants of the Growth Hormone Gene in Japanese Cattle. Anim. Sci. Technol. (Jpn.) 65(4): 340-346.
  6. Choi, Y. J., Yim, D. S., Cho, J. S., Cho, B. D., Na, K. J. and Baik, M. G. 1997. Analysis of Restriction Fragment Length Polymorphism in the Bovine Growth Hormone Gene Related to Growth Performance and Carcass Quality of Korean Native Cattle. Meat Science 45(3):405-410.
  7. Cowan, C. M., Dentine, M. R., Ax, R. L. and Schuler, L. A. 1989. Restriction fragment length polymorphisms associated with growth hormone and prolactin genes in Holstein bulls: evidence for a novel growth hormone allele. Anim. Genet. 20: 157-165.
  8. De Vos, A. M., Ultsch, M. and Kossiakoff, A. 1992. Human growth hormone and extrcellular domain of its receptor: Crystal structure of the complex. Science 255:306-312.
  9. Fernandez, H. N., Daurat, S. T., Pena, C., Dellacha, J. M., Santome, J. A. and Paladin, A. C. 1971. Localization of a Microheterogeneity in the Amino Acid Sequence of Bovine Growth Hormone. FEBS Letters 18:53-54.
  10. Gordon, D. F., Quick, D. P., Erwin, C. R., Donelson, J. E. and Maurer, R. A. 1983. Nucleotide sequence of the bovine growth hormone chromosomal gene. Mol. Cell. Endo- crinol. 33:81-95.
  11. Hallerman, E. M., Nave, A., Kashi, Y., Holzer, Z., Soller, M. and Beckman, J. S. 1987. Restriction fragment Iength polymorphisms in dairy and beef cattle at the growth hormone and prolactin loci. Anim, Genet. 18:213.
  12. Hoj, S., Fredholm, M., Larsen, N. J. and Nielsen, V. H. 1993. Growth hormone gene polymorphism associated with selection for milk fat production in lines of cattle. Anim. Genet. 24:91-95
  13. Lagziel, A.. Lipkin, E. and Soller, M. 1996. Association Between SSCP Haplotypes at the Bovine Growth Hormone Gene and Milk Protein Percentage. Genetics 142:945-951.
  14. Lagziel, A., Lipkin, E., Ezra, E., Soller, M. and Weller, J. I. 1999a. An Msp I polymorphism at the bovine growth hormone (bGH) gene is linked to a locus affecting milk protein percentage. Anim. Genet. 30:296-299.
  15. Lagziel, A. and Soller, M. 1999b. DNA sequence of SSCP haplotypes at the bovine growth hormone (bGH) gene, Anim. Genet. 30:362-365.
  16. Lagziel, A., DeNise, S., Hanotte, O., Dhara, S., Glazko, V., Broadhead, A., Davoli, R., Russo, V. and Soller, M. 2000. Geographic and breed distribution of an Msp I PCR-RFLP in the bovine growth hormone (bGH) gene. Anim, Genet. 31: 210-213.
  17. Lee, B. K.. Lin, G. F., Crooker, B. A., Murtaugh, M.P., Hansen, L. B. and Chester-Jones, H. 1996, Association of Somatotropin (BST) Gene Polymorphism at the 5th Exon with Selection for Milk Yield in Holstein Cows. Domestic Animal Endocrinology 13(4):373-381.
  18. Lehninger, A. L., Nelson, D. L. and Cox, M. M. 1993. Principles of Biochemistry. 2nd ed., Seoul Foreign Books Publishers Co., LTD. Seoul, Korea. p. 113.
  19. Li, C. H., Dixon, J. S., Lo, T. B., Pankov, Y. A. and Schmidt, K. D. 1969. Amino-acid Sequence of Ovine Lactogenic Hormone. Nature 224:695-696.
  20. Lucy, M. C., Hauser, S. D., Eppard, P. J., Krivi, G. G., Clark, J. H., Bauman, D.. E. and Collier. R. J. 1993. Variants of Somatotropin in Cattle: Gene Frequencies in Major Dairy Breeds and Associated milk Production, Domestic Animal Endocrinology 10(4):325-333.
  21. Miller, S. A., Dykes, D. D. and Polesky, H. F. 1988. A simple salting out procedure for extracting DNA. trom human nucleated cells. Nucleic Acids Research 16(3):1215.
  22. Miller, W. L., Martial, J. A. and Baxter, J. D.1980. Molecular Cloning of DNA Complementary to Bovine Growth Hormone mRNA J. BioI. Chem. 255(16):7521-7524.
  23. Miller, W. L., Coit, D., Baxter, J. D. and Martial, J. A. 1981. Cloning of Bovine Prolactin cDNA and Evolutionary Implications of its Sequence. DNA 1:37-50.
  24. Niall, H. D., Hogan, M. L., Sauer, R., Rosenblum, I. Y. and Greenwood, F. C. 1971. Sequences of Pituitary and Placental Lactogenic and Growth Hormones: Evolution from a Primordial Peptide by Gene Reduplication. Proc. Natl, Acad. Sci. USA 68(4):866-869.
  25. Rocha, J. L., Baker, J. F., Womack. J. E., Sanders, J. O. and Taylor, J. F. 1992. Statistical Associations Between Restriction Fragment Length Polymorphisms and Quantitative Traits in Beef Cattle. J. Anim. Sci. 70:3360-3370.
  26. Rodrigues, C. V., Guimaraes, S. E. F., Neto, E. D. and Pinheiro, L. E. L. 1998. Identification of a novel polymorphism in the promoter region of the bovine Growth Hormone gene. Anim, Genet. 29:65-66.
  27. Sambrook, J., Fritsch, E. F. and Maniatis. T. 1989. Molecular cloning a laboratory manual. 2nd Ed. Cold Spring Harbor Lababoratory.
  28. Santome, J. A., Dellacha, J. M., Paladini, A. C., Wolfenstein, C. E. M., Pena, C., Poskus, E., Daurat, S. T., Biscoglio, M. J., Dc Sese. Z. M. M. and De Sanguesa, A. V. F. 1971. The Amino Acid Sequence of Bovine Growth Hormone. FEBS letters 16(3):198-200.
  29. Sawyer, L. A., Hennessy, J. M., Peixoto, A. A., Rosato, E., Parkinson, H., Costa, R. and Kyriacou, C. P. 1997. Natural variation in a Drosophila clock gene and temperature compensation. Science 278:2117-2120.
  30. Schlee, P., Graml, R., Rottmann, O. and Pirchner, F. 1994. lnfluence of growth-hormone genotypes on breeding values of Simmental bulls. J. Anim. Breed. Genet. 111 :253-256.
  31. Seavey, B. K., Singh, R. N. P., Lewis, U. J. and Geschwind, I. I. 1971.. Bovine Growth Hormone:Evidence for two allelic forms. Biochem, Biophys. Res. Commun, 43(1): 189-195.
  32. Secchi, C. and Borromeo, V. 1997. Structure and function of bovine growth hormone, Bovine growth hormone as an experimental model for studies of protein-protein interactions. J. Chromatography B 688:161-177
  33. Sherwood, L. M. 1967. Similarities in the chemical structure of Human Placental Lactogen and Pituitary Growth Hormone. Proc, Natl. Acad. Sci. USA 58:2307-2314.
  34. Stasio, L. D., Sartore, S. and Albera, A. 2001. Lack of association of GH1 and POUIF1 gene variants with meat production traits in Piemontese cattle. Anim. Genet. 33:61-64.
  35. Takahashi, Y., Kaji, H., Okimura, Y., Goji. K., Abc, H.. and Chihara, K. 1996. Short stature caused by a mutant growth hormone, N. Engl. J. Med, 334:432-436.
  36. Takahashi, Y., Shirono, H., Arisaka, O., Takahashi, K.. Yagi, T., Koga, J., Kaji, H., Okimura, Y., Abc, H., Tanaka, T. and Chihara, K. 1997. Biologically Inactive Growth Hormone Caused by an Amino Acid Substitution. J. Clin. Invest, 100(5):1159-1165.
  37. Taylor, J. F., Coutinho, L. L., Herring, K. L., Gallagher, D. S.. Brenneman, R. A., Burney, N., Sanders, J. O., Turner, J. W., Smith, S. B., Miller, R. K., Savell, J. W. and Davis, S. K. 1998. Candidate gene analysis of GHI for effects on growth and carcass composition of cattle, Anim. Genet, 29:194-201.
  38. Unanian, M. M., DeNise. S.. K., Zhang, H. M. and Ax, R. L. 1994. Rapid Communication: Polymerase Chain Reaction-Restriction Fragment Length Polymorphism in the Bovine Growth Hormone Gene, J. Anim. Sci. 72:2203.
  39. Wallis. M. 1973. The Primary Structure of Bovine Growth Hormone, FEBS Letters 35(1):11-14.
  40. Woychik, R. P., Camper, S. A.. Lyons, R. H.. Horowitz, S., Goodwin. E. C. and Rottman, F. M. 1982. Cloning and nucleotide sequencing of the bovine growth hormone gene. Nucleic Acids Research 10(22):7197-7210.
  41. Yao, J., Aggrey, S. E., Zadworny, D., Hayes. J. F. and Kuhnlein, U. 1996. Sequence Variations in the Bovine Growth Hormone Gene Characterized by Single-Strand Conformation Polymorphism (SSCP) Analysis and their Association with Milk Production Traits in Holsteins. Genetics 144: 1809-1816.
  42. Zhang, H. M., Brown, D. R., Denise. S. K. and Ax. R. L. 1992. Nucleotide sequence determination. of a bovine somatotropin allele. Anim. Genet, 23:578.
  43. 신형두. 1992. 한우(Bos laurus coreanae)의 혈액형에 관한 연구. 서울대학교 박사학위 논문.
  44. 정의룡, 임태진, 한상기. 1996. 젖소에서 성장호르몬과 prolactin 유전자의 PCR-RFLP 표지와 생산형질간의 연관성 분석. 한국축산학회지 38(4):321-336.
  45. 조병욱, 황규춘, 이득환, 이학교, 전광주, 한재용. 1998. 한우의 경제형질들과 관련한 유단백유전자와 성장호르몬 유전자의 효과. 한국축산학회지 40(2):135-144.

Cited by

  1. Identification of Single Nucleotide Polymorphisms (SNPs) of the Bovine Growth Hormone (bGH) Gene Associated with Growth and Carcass Traits in Hanwoo vol.26, pp.10, 1970,
  2. Effects of POU1F1 and GH1 genotypes on carcass traits in Hanwoo cattle vol.32, pp.2, 2010,