Studies for Processing Condition Optimization and Physicochemical Property of Resistant Starch

난소화성 전분 제조공정의 최적화 및 이화학적 특성 연구

  • 한명륜 (단국대학교 식품공학과) ;
  • 김우경 (단국대학교 식품영양학과) ;
  • 강남이 (서울보건대학 식품영양학과) ;
  • 이수정 (부천전문대학 식품영양학과) ;
  • 김명환 (단국대학교 식품공학과)
  • Published : 2003.12.01


As a result of resistant starch yield depending on heating temperature, moisture content, storage temperature and heating-cooling cycle with RSM (response surface methodology), high amylose corn starch (46%) was appeared higher than normal corn starch in the yield (22%). At the high amylose corn starch, optimum conditions for resistant starch formation were 6 times of heating-cooling cycle, 108$^{\circ}C$ heating temperature and 67% moisture content at the 2$0^{\circ}C$ storage temperature, which resulted in 25% yield with these experiment conditions. Affecting factor for the resistant starch formation was arranged according to heating -cooling cycle, moisture content, heating temperature and storage temperature. Raw corn starch granule was destructive and appeared a porous reticular structure by the resistant starch formation. Color became dark and increased yellowness by caramelization during heating processing. Heating-cooling processing was the result of decreased hardness, cohesiveness, springiness and gumminess.

아밀로오스 함량이 22%인 일반 옥수수전분과 아밀로오스 함량이 46%인 고아밀로오스 옥수수 전분을 이용하여 난소화성 전분의 제조과정 중 가열온도, 수분함량, 저장온도 및 가열-냉각회수 인자들이 난소화성 전분생성율에 미치는 영향을 반응표면분석법으로 분석한 결과 고아밀로오스 옥수수 전분이 옥수수 전분에 비하여 높은 난소화성 전분의 생성율을 나타내었다. 본 실험조건에서 고아밀로오스 옥수수 전분의 난소화성 전분 생성 최적 제조조건은 6회의 가열-냉각, 2$0^{\circ}C$의 저장온도, 108$^{\circ}C$의 가열온도 및 57%의 수분함량이었으며 생성율은25%수준이었다. 난소화성 전분의 제조시 영향을 미치는 순서는 가열-냉각회 수, 수분함량, 가열온도, 저장(냉각)온도 순이었다. 난소화성 전분의 제조과정에서 전분입자의 파괴 및 다공성 망상구조를 보였으며 비표면적의 증가와 평균직경의 감소현상이 나타났고 열처리에 의하여 색깔은 어두워지고 노란색상의 증가를 보였다. 가열-냉각 과정에서 옥수수 전분의 경도, 응집성, 탄력성 및 점성의 감소현상이 두드러졌다.



  1. Asp NG. 1996. Classification by chemistry and physiology. Food Chemistry 57: 9-14.
  2. Baghurst PA, Baghurst KI. 1996. Record dietary fibre, nonstarch polysaccharides and resistant starch-a review. Food Australia 48: S3-S25.
  3. Brown IL. 2001. Resistant starch: plant breeding applications developement and commercial use. In Advanced dietary fibre technology. McCleary BV, Prosky L, eds. Blackwell Science, Oxford, UK. p 401-412.
  4. Sievert D, Pomerenz Y. 1989. Enzyme-resistant starch I. Characterization and evaluation by enzymetic, thermoanalytical and microscope methods. Cereal Chem 66 : 342-347.
  5. Leloup VM, Colonna P, Ring S. 1992. Physicochemical aspects of resistant starch. J Cereal Sci 16: 253-266.
  6. Alejandra GA, Fulgencio SC, Delcour JA. 1998. Influence of botanical source and processing on formation of resistant starch type III. Cereal Chem 75: 802-804.
  7. Berry CS. 1986. Resistant starch formation and measurement of starch that survives, exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. J Cereal Sci 4: 301-314.
  8. Sievert D, Czuchajowska Z, Pomerenz Y. 1990. Enzymeresistant starch. Part Ⅲ. Characterization of heat-treated amylomaize Ⅶ starch preparations and corresponding RS fractions by X-ray diffraction and DSC. Cereal Chem 68: 86-91.
  9. Eerlingen RC, Cillen G, Delcour JA. 1994. Enzyme-resistant starch. Ⅳ. Effect of endogenous lipids and added sodium dodecyl sulfate on formation of resistant starch. Cereal Chem 71: 170-177.
  10. Sivert D, Czuchajowska Z, Pomeranz Y. 1991. Enzymeresistant starch. Part. Effects of complexing lipids. Cereal Chem 68: 537-542.
  11. Eerlingen RC, Deceuninck M, Delcour JA. 1993. Enzymeresistant starch. II. Influence of amylose chain length on resistant starch formation. Cereal Chem 70: 345-350.
  12. Kim JO, Kim WS, Shin MS. 1997. A comparative study on retrogradation of rice starch gels by DSC, X-ray and $\alpha$-amylase methods. Starch 49: 71-75.
  13. Zhang W, Jackson DD. 1992. Retrogradation behavior of wheat starch gels with differing molecular profiles. J Food Sci 57: 1428-1432.
  14. Lee SK, Mun SK, Shin MS. 1997. Effect of heating conditions on the resistant starch formation. Agric Chem Biotechnol 40: 220-224.
  15. Young GD. 1996. Prevention of colon cancer: role of short chain fatty acids produced by intestinal flora. Asia Pacific J Clin Nutr 5: 44-47.
  16. Goni I, Alonso AG. 2000. In vitro fermentation of different types of $\alpha$-amylase resistant corn starches. Food Res Technol 211: 311-316.
  17. Ranhotra GS, Gelroth JA, Glaser BJ. 1986. Effect of resistant starch on blood and liver lipids in hamsters. Cereal Chem 73: 176-178.
  18. Kahlon TS, Chow FI. 2000. Lipidemic response of hamsters to rice bran, uncooked or processed white and brown rice, and processed corn starch. Cereal Chem 77: 673-678.
  19. SAS. 1993. SAS/INSIGHT user's guide version 6. 2nd edition, Cary, NC.
  20. AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC. p 1105.
  21. Mua JP, Jackson DS. 1998. Retrogradation and gel textural attributes of corn starch amylose and amylopectin fractions. J Cereal Sci 27: 157-166.
  22. Jung SH, Shin GJ, Choi CU. 1991. Comparison of physicochemical properties of corn, sweet potato, potato, wheat and mungbean starches. Korean J Food Sci Technol 23: 272-275.
  23. Aggarawal P, Dollimore D. 2000. Degradation of starchy food material by thermal analysis. Thermochimica Acta 357: 57-63.
  24. Kim MH, Kim JO, Shin MS. 2001. Effects of resistant starches on the characteristics of sponge cakes. J Korean Soc Food Sci Nutr 30: 623-629.