DOI QR코드

DOI QR Code

Torsion of Hypothetical Single-Wall Silicon Nanotubes

가상의 단일벽 실리콘 나노튜브의 비틀림

  • 변기량 (중앙대학교 전자전기공학부) ;
  • 강정원 (중앙대학교 전자전기공학부) ;
  • 이준하 (상명대학교 컴퓨터 정보통신공학부) ;
  • 권오근 (세명대학교 인터넷 정보학부) ;
  • 황호정 (중앙대학교 전자전기공학부)
  • Published : 2003.12.01

Abstract

The responses of hypothetical silicon nanotubes under torsion have been investigated using an atomistic simulation based on the Tersoff potential. A torque, proportional to the deformation within Hooke's law, resulted in the ribbon-like flattened shapes and eventually led to a breaking of hypothetical silicon nanotubes. Each shape change of hypothetical silicon nanotubcs corresponded to an abrupt energy change and a singularity in the strain energy curve as a function of the external tangential force, torque, or twisted angle. The dynamics o silicon nanotubes under torsion can be modelled in the continuum elasticity theory.

References

  1. Crit. Rev. solid State Mater. Sci. v.27 no.3-4 Carbon Nanostructures O.A.Shenderova;V.V.Zhirnov;D.W.Brenner https://doi.org/10.1080/10408430208500497
  2. Appl. Mech. Rev. v.55 no.6 Mechanics of carbon nanotubes D.Qian;G.J.Wagner;W.K.Liu;M.F.Yu;R.S.Ruoff https://doi.org/10.1115/1.1490129
  3. Science v.269 no.2045 Boron nitride nanotubes N.G.Chopra;R.J.Luyken;K.Cherrey;V.H.Crespi;M.L.Cohen;S.G.Louie;A.Zettl https://doi.org/10.1126/science.269.5226.966
  4. Phys. Rev. Lett. v.76 no.25 Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge A.Loiseau;F.Willaime;N.Demoncy;G.Hug;H.Pascard https://doi.org/10.1103/PhysRevLett.76.4737
  5. Chem. Phys. Lett. v.257 no.5 Pyrolytically grown BxCyNz nanomaterials: nanofibres and nonotubes M.Terrones;A.M.Benito;C.MantecaDiego;W.K.Hsu;O.I.Osman;J.P.Hare;D.G.Reid;H.Terrones;A.K.Cheetham;K.Prasides;H.W.Kroto;D.R.M.Walton https://doi.org/10.1016/0009-2614(96)00594-5
  6. Science v.278 no.5338 Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon K.Suenaga;C.Colliex;N.Demoncy;A.Loiseau;H.Pascard;F.Willaime https://doi.org/10.1126/science.278.5338.653
  7. Nature v.387 no.6635 Hollow nonoparticles of WS₂as potential solid-state lubricants L.Rapoport;Y.Bilik;Y.Feldman;M.Homyonfer;S.R.Cohen;R.Tenne https://doi.org/10.1038/42910
  8. Science v.267 no.5195 High rate, gas phase growth of MoS2 nested inorganic fullerenes and nonotubes Y.Feldman;E.Wasserman;D.J.Srolovitz;R.Tenne https://doi.org/10.1126/science.267.5195.222
  9. Nature v.360 no.6403 Polyhedral and cylindrical structures of tungsten disulfide R.Tenne;L.Margulis;M.Genut;G.Hodes https://doi.org/10.1038/360444a0
  10. Angew. Chem. Int. Ed. v.41 no.14 Oxidic nanotubes and nanorods - anisotropic modules for a future nanotechnology G.R.Patzke;F.Krumeich;R.Nesper https://doi.org/10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K
  11. Nature v.395 no.6700 Cage structures and nanotubes of NiCl₂ Y.R.Hacohen;E.Grunbaum;R.Tenne;J.Sloand;J.L.Hutchinson https://doi.org/10.1038/26380
  12. Adv. Mater. v.14 no.15 Vapor-Liquid-Solid (VLS) growth of NiCl₂ Y.R.Hacohen;R.PopovitzBiro;E.Grunbaum;Y.Prior;R.Tenne https://doi.org/10.1002/1521-4095(20020805)14:15<1075::AID-ADMA1075>3.0.CO;2-H
  13. Adv. Mater. v.14 no.17 Trititanate nanotubes made via a single alkali treatment Q.Chen;W.Zhou;G.Du;L.M.Peng https://doi.org/10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO;2-0
  14. Appl. Phys. Lett. v.82 no.4 Photoluminescence from surfactant-assembled Y₂O₃:Eu nanotubes C.Wu;W.Qin;G.Qin;D.Zhao;J.Zhang;S.Huang;S.Lu;H.Liu;H.Lin https://doi.org/10.1063/1.1542685
  15. Adv. Mater. v.14 no.4 Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecysulfate assemblies M.Yada;M.Mihara;S.Mouri;M.Kuroki;T.Kijima https://doi.org/10.1002/1521-4095(20020219)14:4<309::AID-ADMA309>3.0.CO;2-Q
  16. Phys. Rev. B v.60 no.11 Stability and electronic structure of GaN nanotubes from density-functional calculations S.M.Lee;Y.H.Lee;Y.G.Hwang;J.Elsner;D.Porezag;Th.Frauenheim https://doi.org/10.1103/PhysRevB.60.7788
  17. Phys. Rev. B v.58 no.8 Theoretical study of the structural and electronic propeties of GaSe nanotubes M.Cote;M.L.Cohen;D.J.Chadi https://doi.org/10.1103/PhysRevB.58.R4277
  18. Chem. Phys. Lett. v.318 no.4-5 Theoretical prediction of phosphorus nanotubes G.Seifert;E.Hernandez https://doi.org/10.1016/S0009-2614(99)00045-2
  19. 전기전자재료학회논문지 v.14 no.10 유도결합형 플라즈마 화학기상 중착법을 이용한 탄소나노튜브의 성장 및 전계방출 특성 연구 김광식;류호진;장건익
  20. 전기전자재료학회논문지 v.15 no.4 플라즈마 화학 기상 증착법에서 DC bias 가 인가된 탄소 나노튜브의 수직성장과 전계방출 특성 정성회;김광식;류호진;장건익 https://doi.org/10.4313/JKEM.2002.15.4.367
  21. 전기전자재료학회논문지 v.15 no.8 유도결합형 플라즈마 화학기상증착법에서 탄소나노튜브의 수직성장과 전계방출 특성 향상 연구 김광식;류호진;장건익 https://doi.org/10.4313/JKEM.2002.15.8.713
  22. Nature v.399 no.6731 Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires J.Hu;M.Ouyang;P.Yang;C.M.Lieber https://doi.org/10.1038/19941
  23. Phys. Rev. Lett. v.83 no.4 Are quasi-one dimensional structures of Si stable? M.Menon;E.Richter https://doi.org/10.1103/PhysRevLett.83.792
  24. Phys. Rev. B v.60 no.16 Fullerene-structured nanowires of silicon B.Marsen;K.Sattler https://doi.org/10.1103/PhysRevB.60.11593
  25. Phys. Rev. B v.63 no.15 Tubular structures of silicon G.Seifert;Th.Kohler;H.M.Urbassek;E.Hernandez;Th Frauenheim https://doi.org/10.1103/PhysRevB.63.193409
  26. Phys. Rev. B v.65 no.15 Electronic and geometric structure of thin stabl short silicon nonowires B.Li;P.Cao;R.Q.Zhang;S.T.Lee https://doi.org/10.1103/PhysRevB.65.125305
  27. Phys. Rev. B v.61 no.15 Ab initio calculations for a hypothetical material: Silicon nanotubes S.B.Fagan;R.J.Baierle;R.Mota;A.J.R.da Silva;A.Fazzio https://doi.org/10.1103/PhysRevB.61.9994
  28. J. MOl. Struc. v.539 no.1-3 Stability inverstigation and thermal behavior of a hypothetical silicon nanotube S.B.Fagan;R.Mota;R.J.Baierle;G.Paiva;A.J.R.da Silva;A.Fazzio
  29. Chem. Phys. Lett. v.364 no.3 Silicon nanotubes: Why not? R.Q.Zhang;S.T.Lee;C.K.Law;W.K.Li;B.K.Teo https://doi.org/10.1016/S0009-2614(02)01334-9
  30. Phys. Lett. A v.297 no.5-6 Electronic band structure of new quasi-one-dimensional crystals: $Zr_8C_{12}$ and $Nb_8C_{12}$ clusters inside single-walled carbon, silicon, BN and GaN nanotubes V.V.Ivanovskaya;A.A.Sofronov;A.L.Ivanosvkii https://doi.org/10.1016/S0375-9601(02)00253-0
  31. Phys. Rev. B v.51 no.19 Sturcture of the $Si_{12}$ cluster A.Bahel;M.V.Ramakrishna https://doi.org/10.1103/PhysRevB.51.13849
  32. Phys. Rev. Lett. v.86 no.9 Formation of metal-encapsulating Si cage clusters H.Hiura;T.Miyazaki;T.Kanayama https://doi.org/10.1103/PhysRevLett.86.1733
  33. Nano Lett. v.2 no.4 Structure and stability of Ni-Encapsulated Si nanotube M.Menon;A.N.Andriotis;G.Froudakis https://doi.org/10.1021/nl015695w
  34. J. Catalysis v.200 no.2 The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential C.Pham-Huu;N.Keller;G.Ehret;M.J.Ledoux https://doi.org/10.1006/jcat.2001.3216
  35. Adv. Mater. v.14 no.17 Silicon nanotubes J.Sha;J.Niu;X.Ma;J.Xu;X.Zhang;Q.Yang;D.Yang https://doi.org/10.1002/1521-4095(20020903)14:17<1219::AID-ADMA1219>3.0.CO;2-T
  36. Adv. Mat. v.15 no.14 Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy S.Y.Jeong;J.Y.Kim;H.D.Yang;B.N.Yoon;S.H.Choi;S.J.Eum;C.W.Yang;Y.H.Lee https://doi.org/10.1002/adma.200304898
  37. J. Phys: Condens. Matter v.14 no.39 Sturctures of ultrathin copper nanotubes J.W.Kang;J.J.Seo;H.J.Hwang https://doi.org/10.1088/0953-8984/14/39/309
  38. J. Nanosci. Nanotech. v.2 no.6 Molecular dynamics study of hypothetical silicon nanotubes using Tersoff potential J.W.Kang;J.J.Seo;H.J.Hwang https://doi.org/10.1166/jnn.2002.146
  39. Nanotechnology v.14 no.3 Hypothetical silicon nanotubes under axial compression J.W.Kang;H.J.Hwang https://doi.org/10.1088/0957-4484/14/3/309
  40. J. Korean Phys. Soc. v.42 no.5 Atomistic simulation of hypothetical silicon nanotubes under tension K.R.Byun;J.W.Kang;H.J.Hwang
  41. Phys Rev. Lett. v.76 no.14 Nanomechanics of carbon tubes: instabilities beyond linear response B.I.Yakobson;C.J.Brabec;J.Bernholc https://doi.org/10.1103/PhysRevLett.76.2511
  42. Am. Sci v.85 no.7-8 Fullerene nonotubes: C_$_1,000,000$ and beyond B.I.Yakobson;R.Smalley
  43. J. Chem. Phys. v.104 no.5 Stuctural flexibility of carbon nanotubes S.Iijima;C.Brabec;A.Maiti;J.Bernholc https://doi.org/10.1063/1.470966
  44. Carbon v.33 no.1 Flexibility of graphene layers in carbon nanotubes J.F.Despres;E.Daguerre;K.Lafdi https://doi.org/10.1016/0008-6223(95)91118-Q
  45. Phys. Rev. B v.53 no.20 Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry O.Stephan;P.M.Ajayan;C.Colliex;F.Cyrot-Lackmann;E.Sandre https://doi.org/10.1103/PhysRevB.53.13824
  46. Phys. Rev. B v.45 no.21 Energetics of nanoscale graphitic tubules D.H.Robertson;D.W.Brenner;J.W.Mintmire https://doi.org/10.1103/PhysRevB.45.12592
  47. Nature v.389 no.6651 Bending and buckling of carbon nanotubes under large strain M.R.Falvo;G.J.Clary;R.M.TaylorⅡ;V.Chi;F.P.BrooksJr.;S.Washburn;R.Superfine https://doi.org/10.1038/39282
  48. Phys. Rev. B v.64 no.15 Locked twist in multiwalled carbon-nanotube ribbons M.F.Yu;M.J.Dyer;J.Chen;D.Qian;W.K.Liu;R.S.Ruoff https://doi.org/10.1103/PhysRevB.64.241403
  49. Phys Rev. Lett. v.56 no.6 New empirical model for the structural properties of silicon J.Tersoff https://doi.org/10.1103/PhysRevLett.56.632
  50. Phys. Rev. B v.37 no.12 New empirical approach for the structure and energy of covalent systems J.Tersoff https://doi.org/10.1103/PhysRevB.37.6991
  51. Phys Rev. Lett. v.68 no.10 New one-dimensional conductors: graphitic microtubules N.Hamada;S.Sawada;A.Oshiyama https://doi.org/10.1103/PhysRevLett.68.1579
  52. Phys Rev. Lett. v.80 no.20 Elastic Properties of C and BxCyNz composite nanotubes E.Hernandez;C.Goze;P.Bernier;A.Rubio https://doi.org/10.1103/PhysRevLett.80.4502
  53. Comp. Mater. Sci. v.8 no.4 High strain rate fracture and C-chain unraveling in carbon nanotubes B.I.Yakobson;M.P.Campbell;C.J.Barbec;J.Bernholc https://doi.org/10.1016/S0927-0256(97)00047-5
  54. J. Comp.-Aided Mater. Design v.3 Sturctural mechanics of carbon nonotubes; from continuum elasticity to atomistic fracture B.I.Yakobson;C.J.Brabec;J.Bernholc https://doi.org/10.1007/BF01185652
  55. Phys. Rev. B v.58 no.8 Atomic resolution STM imaging of a twisted single-wall carbon nanotube W.Clauss;D.J.Bergeron;A.T.Johnson https://doi.org/10.1103/PhysRevB.58.R4266
  56. Phys Rev. Lett. v.84 no.7 Orientational melting in carbon nanotube ropes Y.K.Kwon;D.Tomanek https://doi.org/10.1103/PhysRevLett.84.1483