경량화 반사경의 최적설계에 관한 연구

박강수1 · 박현철 · 조지현 · 유성기*
한국과학기술원 기계공학과
① 305-701 대전광역시 유성구 구성동 373-1번지

이준호
*한국과학기술원 인공위성 연구센터
① 305-701 대전광역시 유성구 구성동 373-1번지
(2003년 2월 5일 한국과학기술원 인공위성 연구센터, 2003년 6월 16일 수정본 발행)

인공위성 카메라에 장착되는 반사경의 경량화 설계를 위해 최적설계법을 적용하였다. 최적설계 과정에서 목적함수로는 카메라가 담겨진 인공위성의 방사비율을 줄이기 위해 반사경의 무게를 최소화하려는 것으로 설정하였다. 반사경의 자중에 의한 변형(피크-파일링) 및 고유진동수의 크기를 제한조건으로 두었다. 최적화 프로그램은 DOT(Design Optimization Tool)을 이용하여 한차원법으로 설계변수에 따른 목적함수의 제한조건을 만족하여 구성한 최적설계 프로그램의 결과를 최종적으로 최적값을 구하였으며, 최종적으로 각 부분의 무게를 최소화하였다.

주제어 : lightweight mirror, optimal design, P-V value, RMS value.

I. 서 론

인공위성 카메라 반사경의 경우 광학적 상에 영향을 미치는 자체 변형의 영향을 최소화하기 위해 경량화와 함께 고 장성
이 요구되어야 한다.

이를 위해 일반적으로 반사경 뒷면 형상을 범위구조로 만드는 경우가 많다. 이렇게 한 법결 형태의 경량화 구조를 갖고 있는 반사경의 형상을 보여준다.

반사경 경량화를 위한 연구로서 여러 가지 하관 형상에 따른 성능 비교가 박지수와 Vukobratovich17에 의해 시도되었다.

조지현과 Richard 그리고 Vukobratovich23는 반사경 광학면의 파면차를 최소화하고 동시에 계측비용을 줄이며, 반사경을 지지하기 위한 최적의 지지점의 위치를 설계기준으로 설정하여 자중이 작용하는 경우 경량화 반사경 설계를 위한 절차 및 방법을 제시하였다.

또한 Anderson, Parks, Hansen 그리고 Melugin18은 경량화 2차 계측식 반사경 모델을 설계하고 자중이 작용하는 경우에 있어서의 변형을 예측하였다.

그리고 해석결과로부터 광학면의 오차를 제니케(Zernike) 다항식으로 분할하고 그 결과를 실제 광학시험으로 얻은 광학면의 오차와 비교하였다.

Genberg와 Cormany4는 비선형계획법을 이용하여 반사경 경량화를 위한 최적설계를 수행하였다. 이 논문에서 저자들은 반사경의 구조와 관련된 설계변수와 함께 제작성도 고려하였다.

이러한 기존의 연구는 주로 경량화에 의존하는 방법으로 시간과 비용에 큰 단점을 가지고 있다.

따라서 본 연구에서는 기존의 반사경의 설계방식에서 탈피하여 최적설계 방법에 근거한 경량화 반사경 설계를 수행하였다. 이와 동시에 최적설계를 통해 얻은 해석결과를 바탕으로 자중에 의한 결함특성이 가해지는 경우 반사경의 구조적 변형이 광학성능에 미치는 영향을 분석하였다.

또한 최적화 방법을 통하여 얻은 결과들의 수치결과를 적용하여 광학적 성능을 분석하고 그 탄성성의 지속성을 증명하였다. 전체적인 해석결과에 관한 목록은 그림 2와 같다.

II. 경량화 반사경의 최적설계 수식화

일반적으로 고성능 지구 관측용 위성에 사용되는 카메라의 지상에서 우주 관측에 사용되는 대형 망원경의 반사경은 적절한 강성을 가지며, 광학적 동적 하중 하에서 융박과 변위가 작아야 한다.

과거에는 반사경의 설계 시 사용되는 환경을 미리 설정하고 그 안에서 여러 가지 영향력의 영자가 변화함에 따라서 성능을 확인하였다. 하지만 최적설계 기법의 적용을 통하여 보다 일반적인 경량화된 반사경의 형상설계를 수행할 수 있게 되었다. 일반적인 최적설계 문제는 다음과 같이 정의할 수 있다.

\[
F(X) \leq 0 \quad i = 1, \ldots, M
\]

\[
X_L \leq X \leq X_U \quad j = 1, \ldots, N
\]
여기서 \(F \) 는 목적함수, \(g \) 는 부등식 제한조건, \(X \) 는 설계변수 벡터, \(XL \) 과 \(XU \) 는 각각 설계변수의 하·상한값이다.

더부분의 경우 (1)의 목적함수와 제한조건식은 설계변수 \(X \)의 비선형 함수 형태를 지니며 이러한 함수의 형태에 대하여 효과적으로 목적함수를 증가 혹은 감소시켜기 위해 비선형 계획법을 이용한 최적화 방법들이 널리 쓰이고 있다.[4]

다다수의 경우 반사형의 적경과 껍봉은 광학적 요구조건으로 주어진다. 그리고 경량화 반사형은 광학면의 상·하관이 모두 존재하는 샌드위치 반사형과 하관이 존재하지 않는 오토 백 경량화 반사형이다. 이 논문에서는 반사형의 상관이 광학적으로 존재하는 경우를 고려하였다. 이는 샌드위치 경량화 구조에 비교하였을 때 제작 및 가공비용의 용이성으로 인해 많이 사용되고 있는 경량화 형상이기 때문이다.

따라서 경량화 반사형의 설계에서 고려하여야 하는 설계변수는 반사형 광학면의 두께(\(t_0 \))와 코어의 두께(\(t_c \)). 즉, 형상의 원의 적경(\(R \))과 코어의 높이(\(h_c \))이다.[5]

경량화 반사형의 설계변수들에 관해서는 그림 3에 나타내었다. 반사형의 광학적 성능을 만족시키면서 동시에 두께가 가장 가벼운 형상을 도출하기 위한 구체적인 반사형의 경량화 설계 과정을 다음의 설계식으로 구성하였다.

\[
\text{설계변수} \quad X = (t_0, t_c, B, h_c) \\
\text{최소화} \quad W = \text{반사형 전체 무게}
\]
나타년다.
2. 고유진동수값 계산
\[f_n = \frac{1}{2\pi} \sqrt{\frac{E}{\rho}} > f_n, \text{limit} \]

여기서 \(g \)는 중력 가속도이다.
3. 설계 변수 간의 상관 관계
\[4(t_f + 0.5\eta_1\eta_2)(5(1 - \eta_1)(t_f + 0.5\eta_2) + 0.5(\eta_1 - 1)(t_f + h_f^2)) - 0.5(1 - 0.5\eta_2)(t_f - 0.5\eta_1^2) + 0.25\eta_2(t_f - h_f^2) = 0 \]

설계 변수의 상관 관계식은 Mekta의 식으로부터 확장된 설계 변수 간의 최적 해의 분포를 포함하여 준다.\[1,6] \]
위의 수식들을 이용하여 각각의 경계를 나타내 보았다. 최적설계 프로그램을 이용하여 얻은 설계변수들을 바탕으로 반사장의 범위를 조사한 결과, 그 변화로부터 확장된 해의 패턴을 계산하였다.

III. 경량화 반사장 최적설계 검증에 의

II절에서 제시한 수식들을 바탕으로 반사장의 경량화 설계에 의한 적용에 관한 타당성을 검증하였다. 우선 간단한 예제를 통하여 최적설계 프로그램을 검증하고 실제의 반사장의 설계에 이를 적용하였다. 최적화 과정에서 이용된 프로그램은 상용 프로그램인 DOT\[1,6]이며 일반적으로 최적해를 구하기 위한 방법으로 널리 쓰이고 있는 수정가능한 방식(MODIFIED FEASIBLE DIRECTION METHOD, MFD method)과 순차적 선형개 최법(SEQUENTIAL LINEAR PROGRAMMING METHOD, SLP method)의 알고리즘들을 적용하였다.\[8,9\] 예제로 유호중격 500 mm인 새로운 삼각형 코어형상의 경량화 반사장의 최적화를 수행하였다.

설계에서 사용된 제한조건의 상하한 값 및 제조의 성장지를 표 1에 나타내었다. 피크-밸리 상한값은 확장만의 제한공급근호 내지값이 632.8 mm에 대해서 약 720인 설계건중을 만족해야 함을 고려하여 1/4로 설정하였고 고유진동수 하한값은 반사장 전체 시스템의 고유진동수를 고려하여 150 Hz로 두었다. 경계조건으로 반사장 3장치로 하였으며 하중은 강축과 나란히 작용하는 자중을 고려하였다.

유호중격 500mm의 반사장에 대한 최적화 결과로 설계변수와 목적함수의 수렴경향을 그림 4 및 그림 5를 통하여 확인하였다.

위의 결과로부터 최적화 본작명을 주어진 여러 가지 제한조건 하에서 목적함수가 최소가 되는 방향으로 적절히 작동되고 있음을 확인할 수 있었다. 다음으로 최적의 설계변수들 바탕으로 유한요소법을 구성하고 해석해석을 수행하여 보고 이로부터 얻은 결과의 변화를 이용하여 확장된 최적해를 계산하였다. 이 과정에서 최적설계에 부터 얻은 최적의 설계변수에 대한 검증을 수행하기 위해 절단한 바 있는 동합 해의

<table>
<thead>
<tr>
<th>표 1. 최적설계에 사용된 반사장의 재료 성능치 및 제한조건값</th>
</tr>
</thead>
<tbody>
<tr>
<td>재료의 물성치</td>
</tr>
<tr>
<td>최적값 변위상한값</td>
</tr>
<tr>
<td>고유진동수 하한값</td>
</tr>
</tbody>
</table>

그림 4. 유호중격 500 mm 삼각형 셀 반사장의 경우 측정수에 따른 설계변수값의 변화.

그림 5. 유호중격 500 mm 삼각형 셀 반사장의 경우 측정수에 따른 목적함수값의 변화.

식프로그램을 이용하였다. 최적설계의 해석결과와 통합 해석프로그램을 통한 결과의 비교는 피크-밸리값을 통하여 이루어졌으며 이를 위해 확장형성형의 반사장의 검증에 의해 다루었다. 반사장의 유호중격 600 mm에 대하여 자중의 변화를 강축과 나란히 계산하였다.

식표를 이용한 결과, 확장형성형의 반사장에 대한 최적화결과에 관한 해석작용결과는 그림 7에 나타내었다.

반사장의 경량화 반사장의 경우 이전 확장만의 오차인 피크-밸리값과 최적설계 변수에 근거한 모델의 통합해석 프로그램을 통한 피크-밸리값의 비교결과를 표 8에 나타내었다. 결과에서 알 수 있듯이 두 결과의 오차가 약 7% 정도로 그 차이가 미미함을 알 수 있다. 최적적으로 반사장의 경량화 최적설계 프로그램에서 얻은 결과를 신뢰하고 실제로 경량화 반사장 설계에 적용할 수 있음을 확인할 수 있었다.

IV. 유호중격 600 mm 새로운 삼각형 설 경량화 반사장 설계

앞에서 검증된 경량화 반사장의 최적화 프로그램을 실제 설
표 2. 최적설계와 통합해석 프로그램의 피크-밸리값 비교(육각형 설의 경우)

<table>
<thead>
<tr>
<th>해석 방법</th>
<th>피크-밸리값 [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>최적설계</td>
<td>142.44</td>
</tr>
<tr>
<td>통합해석 프로그램</td>
<td>153.10</td>
</tr>
</tbody>
</table>

가공성의 한계를 고려하여 광학면의 두께와 코어의 삼각형 설 두께, 그리고 설의 한 변 길이에 따라 3가지의 최적해를 얻었다. 이 를 바탕으로 각각의 경우에 대해 유한요소모델을 설정하였다. 해석모델은 그림 8에 나타내었다. 해석에 사용된 반사경의 재료는 크로마이그 광학에 수록된 악기 중 서양의 정격을 나타내는 경우를 고려하였다. 그리고 조건변수로 반사경 아래면의 가장 안쪽 부분을 평지하였다. 이는 반사경을 지지하기 위한 지지부를 원형의 뒷 형상을 갖는 중심지지(circular support)로 고려하였기 때문이다.

각 경우에 대한 광학적 물성치 해석결과 및 경량화율을 표 3에 나타내었다. 표 3에서 경량화율은 경량화 전 반사경의 무
제와 경량화를 위해 제거된 두께의 비로 정의된다.

해석결과에서 모델 1에서 광학면의 제곱평균근호 오차값이 32.1 nm로 가장 적게 나왔으며 기준 파장이 $\lambda = 632.8$ nm에 대하여 약 $\lambda/20$을 만족하는 수치이다.

이는 광학면의 두께와 코어의 삼 두께가 크고 설계의 크기가 다른 모델에 비하여 상대적으로 작기 때문이라고 볼 수 있다. 대신 경량화 비율이 45% (경량화 후 질량은 약 34 kg로 나머지 모델에 비하여 낮게 나왔다. 하지만 설계역학적을 고려하였을 경우 약 56%의 경량화 비율을 나타내었다. 모델 3의 경우 가공성 문제를 제외한다면 경량화 비율이 58%로 가장 큰 값을 보이나 상대적으로 제곱평균근호 오차값인 44.7 nm로 큰 값을 나타내고 있다. 모델 3에서 얇은 코어의 삼 두께와 비교적 큰 설계의 크기 때문에 발생하는 큰 소화적 오차는 이들의 차수를 커지거나 줄이기로서 해결할 수 있을 것으로 판단된다.

V. 결론

본 논문에서는 최적설계를 통하여 구한 경량화 반사경의 최적설계변수를 이용하여 유한요소모델을 구성하고, 광학적 특성치를 해석할 수 있는 프로그램과 연계하여 자중에 의한 변형으로 인해 발생하는 반사경의 광학성능 변화를 분석하였다. 또한 최적설계 프로그램의 감응을 위하여 몇 가지 예제 모델을 수립하고 피크배리값을 유한요소해석을 통하여 얻은 결과와 비교하여 최적설계 프로그램의 적절성은 확인하였다. 이렇게 구성한 경량화 반사경 최적설계 프로그램을 이용한 값이 600mm의 삼각형 설계 가지는 경량화 반사경의 설계에 적용하여 보고 이로부터 얇은 최적의 설계변수를 바탕으로 구성한 설계모델의 광학적 특성치를 통합해석프로그램을 통하여 구하였다.

이러한 결과를 바탕으로 기존의 경량화 별점구조를 갖는 반사경 설계에 최적설계방법을 적용함으로써 설계비용의 절감은 물론 설계시간 단축이라는 두 가지 장점을 동시에 확득할 수 있을 것으로 기대된다.

또한 앞으로 반사경의 제작 시 포함되어야 할 제한조건들 (별점 제한, 등)을 고려하는 최적설계를 수행하고자 한다.

참고문헌

A study on optimum design of a lightweight mirror

Kang-Soo Park†, Hyun-Cheol Park, Ji-Hyun Cho, and Sung-Kie Youn*

Department of Mechanical Engineering, KAIST, Daejeon 305-701, KOREA

†E-mail: pg500@kaist.ac.kr

Jun-Ho Lee*

*Satellite Technology Research Center, KAIST, Daejeon 305-701, KOREA

(Received February 5, 2003, Revised manuscript June 16, 2003)

A study on optimum design of the lightweight mirror of a satellite camera is presented. An optical surface deformation of the lightweight mirror, which is a principal component of the camera system, is an important factor affecting the optical performance of the whole camera system. In this study, optimum design of the lightweight mirror is presented. Total weight of the mirror to reduce the optical surface deformation and the launching cost is used as an objective function. Peak-to-valley value and natural frequency of the mirror are given as constraints to the optimization problem. The sensitivities of the objective function and constraint are calculated by a finite difference method. The optimization procedure is carried out by the commercial optimizer, DOT. As a verification of the optimum design of the mirror, two design examples are treated. In the real application example, the lightweight mirror with 600mm effective diameter is treated. The optimized results with various design variables, which are obtained by considering thickness limitations, are analyzed.

OCSI Code: 220.4880.