문턱 전류 이상에서 양 단면 반사율 조합에 따른 index-coupled DFB 레이저의 파워 추출 효율과 발전 파장 분포

김상택·김부균

서울대학교 정보통신전기공학부
(E) 156-743 서울시 동작구 상도동 5-1-1
(2003년 3월 24일 받음, 2003년 6월 16일 수정본 반음)

문턱 전류에서 여러 가지 κ, κx의 값에 따라 단면 반사율 조합에 대하여 IC DFB 레이저의 파워 추출 효율과 발전 파장 분포를 구하려고 노력해왔고 문턱 전류 이상에서의 결과와 비교하였다. 양 단면 반사율 조합이 비대칭성의 온도수입과 주요 블로드 모르 degeneracy가 완화되어 발전 파장의 분포는 음직이 내벽의 점으로 고르게 분포하였고, 양 단면 반사율 조합이 AR-HR인 경우 문턱 전류와 반사율 조합이 AR-AR인 경우 문턱 전류에서의 발전 파장의 분포는 기울기 모드와 단파장 모드 균형에 존재하였으나, 문턱 전류 이상에서는 SHB 형상으로 인하여 장파장 모드에 집중적으로 분포하였다. κx이 증가함수록 급지 대역의 폭이 넓어져 발전 파장의 분포도 발전 영역에 분포했다.

주제어: index-coupled DFB lasers, power extraction efficiency, laser wavelength distribution, above-threshold.

I. 서 론

WDM 시스템에서 장거리 대용량 전송을 위해서는 출력 파원 가 크고 전력이 좋은 랜섬이 필요하다. Distributed feedback (DFB) 레이저는 다른 반도체 레이저에 비해 안정된 단일 모드 동작이 가능하기 때문에 광통신용소자로 많이 사용되고 있다. WDM 시스템의 다중 파장 광원으로 사용하기 위하여 DFB 레이저 이론에 대한 연구가 수행되고 있다. 이러한 DFB 레이저 이론에 근거한 발전 기초 조절이 필요하며 단일 모드 수율이 높고 출력 파워가 높아 한다.

DFB 레이저의 양 단면의 반사율을 다르게 할 경우 반복 단면에서 출력 파워의 추출 효율을 높일 수 있다. 대부분의 경우 양 단면 반사율 조합에 따른 파워 추출 효율은 문턱 전류와 양단면에서 연구되었다. 단면은 반사율의 높고 단면은 반사율의 낮고 반사율을 유지하기 위하여 IC DFB 레이저의 파워 추출 효율과 발전 파장 분포에 대하여 실험을 수행하였다. 전체 레이저의 길이 조절액의 총합 효율과 단단한 모드 수율과 slope efficiency를 향상시킬 수 있었다. Liew는 loss-coupled(LC) DFB 레이저에서 결합 계수와 이득 결합 계수에 따라 입력 전류와 파워 추출 효율에 대하여 실험하였다.

IC DFB 레이저의 발전 파장은 일반적으로 급지 대역의 양측에 분배되어 있으며 양단면 반사율 조합과의 위치에 따라 발전 파장 분포가 달라진다. Hansmann 등의 경우 LC DFB 레이저에 대하여 loss-coupling 계수에 따른 단단 모드 수율과 양단 반사율 조합에 따른 발전 파장 분포를 제안하였다. 또한 양단 반사율 조합에 의해서 발전 파장은 0.5 nm 변화시킬 수 있었으며 이 경우 양단 반사율 계데는 발전이라는 변화가 없고 출력 파워의 감소는 1dB 이하였다고 보고하였다. Hong 등은 gain-coupled(GC) DFB 레이저에 대하여 양 단면의 격자 위치가 발전 파장, 면적 전류, 정규화된 이동 면적 등에 미치는 영향과 양 단면 출력 파워의 변화를 파악하기 위한 연구를 진행하였다. Sasa는 DFB 레이저의 양 단면에 따라 발전 파장 분포와 AR 단면의 반사율이 발전 파장 분포에 미치는 영향에 대해 실험하였다.

본 논문에서는 여러 가지 양단 반사율 조합에 대하여 DFB 레이저에서 IC DFB 레이저의 파워 추출 효율과 발전 파장 분포에 대하여 실험을 수행하였다. 처음 전류 이상에서 주입 전류에 따라 어떻게 변화하는지 실험하였다. 또한 AR 단면의 반사율이 파워 추출 효율과 발전 파장 분포에 미치는 영향에 제한된 실험에서 0.8, 1.25, 134로 사용한 결합 계수 κx는 0.1, 0.15, 0.2로 다르다. 계측 방법으로는 면적 전류 이상에서의 spatial hole burning(SHB) 효과를 고려하기 위하여 레이저의 레이저의 종류 방향으로 여러 개의 색집으로 분할하고 각 색집에는 소자 파라미터를 상수로 가정하여 계산한 전달행렬법을 사용하였다.

본 논문의 구성은 다음과 같다. 1장에서는 DFB 레이저의 특성 해석 방법을 설명하였고 2장에서는 IC DFB 레이저의 특성 해석 방법을 설명하였고 3장에서는 점화 분석과 양단 반사율 조합에 따른 파워 추출 효율을 설명하였다.

E-mail: bgkim@e.ssu.ac.kr

413
과 발진 파장 분포에 대하여 살펴보았다. 마지막으로 4장에서
는 본 논문의 결론을 냈다.

II. DFB 레이저의 특성 해석 방법

반도체 레이저의 특성 해석 방법을 위해서는 공간기 내부의 전기
분포를 구하는 결합모드 방정식과 투과 형성과 확률 밀도의
관계를 나타내는 비율 방정식을 동시에 해야 한다. 문헌 전례
에서는 유도 방출이 발생하지 않으므로 캐리어와 확률 밀도의
관계를 나타내는 비율 방정식 없이 결합모드 방정식만으로 해
석이 가능하다. 문헌 전례에서의 반도체 레이저의 특성 해석
은 입력이 없을 때 출력이 생기는 발전 조건으로부터 각 모드
의 이득(αs)과 발진 파장(δs)을 구할 수 있다.

문헌 전례 이상에서는 유도 방출이 발생하고 그에 따라 캐
리어와 확률의 관계가 고려되어야 한다. 이러한 관계를 나타
내는 방정식이 비율 방정식이다. 따라서 문헌 전례 이상에
서는 비율 방정식과 결합모드 방정식을 동시에 풀어야 하는데
불규칙한 확률 분포를 고려한 해석적인 해를 구할 수 없기
때문에 컴퓨터 시뮬레이션을 이용하여 해를 구한다. 문헌 전
례에서 구한 모드 이득(αs)과 파장(δs)을 기초로하여 결합
모드 방정식과 비율 방정식을 동시에 만족하는 self consistent
해를 구한다.

그림 1은 해석에 사용된 양 단면 반사 계수와 격자 위상을
고려한 DFB 레이저의 개념도이다. 순방향과 역방향이 진행
하는 정규화된 필드 크기 |d(z)|와 |b(z)|는 다음과 같은 결합모드
방정식을 만족한다.\[1\]

\[
\begin{align*}
\frac{d a(z)}{d z} - (g - \alpha_0 - j\delta) a(z) &= -j \alpha_s b(z) \\
\frac{d b(z)}{d z} + (g - \alpha_0 - j\delta) b(z) &= j \alpha_s a(z)
\end{align*}
\]

(1)

여기서 g는 필드 이득이고 \(\alpha_0\)는 필드 손실이며 \(\delta\)는 브레그
파장으로부터 벡터방을 나타내는 인자(de-tuning factor)이다.
\(\alpha_s(\delta s)\)는 역방향 필드(순방향 필드)가 순방향 필드(역방향 필
드)와 결합하는 정도를 나타내는 결합 계수이다. IC DFB 레
이저의 경우 \(\alpha_s = \alpha_s^\text{in}\)이다.

문헌 전례 이상에서는 유도 방출이 발생하고 그에 따른 광
자 밀도의 캐리어 밀도의 관계는 다음과 같은 비율 방정식으
로 주어진다.

\[
\frac{d N(z)}{d t} = - J^{\text{in}} N(z)^2 - B N(z)^3 + \frac{v_g \delta_N (N(z) - N_0)}{1 + eS(z)} S(z)
\]

(2)

여기서 \(N(z)\)는 캐리어 밀도이고 \(S(z)\)는 광자 밀도로, 정규화된
필드 크기 \(a(z)\)와 \(b(z)\)로부터 구할 수 있다. 나머지 파라미터는
표 1에 나타나 있다.

그림 1과 같은 양 단면의 반사 계수와 격자 위상을 포함한
경계조건은 다음과 같이 표현된다.

\[
a(0) = r_1 b(0), \quad b(L) = r_2 a(L)
\]

(3)

여기서 \(r_1\)와 \(r_2\)는 양 단면 반사 계수와 격자 위상을 모두 포함
한 반사 계수를 의미하며 수식은 \(r_1 = r_0 e^{-j\delta}\)과 \(r_2 = r_0 e^{-j\delta}\)
이다. \(r_0\)와 \(r_2\)는 각각 그림 1에서 왼쪽 단면과 오른쪽 단면
에서의 반사 계수이고 \(\delta\)와 \(\delta\)는 기준면으로부터 양 단면까지
의 위상을 의미한다.

문헌 전례 이상에서 충족 방향으로의 불규칙한 광자 밀도
분포로 인하여 캐리어 밀도의 SHB 현상이 발생한다. 이러한
SHB 현상을 고려하기 위하여 본 논문에서는 전달 행렬 방향
을 사용하였다. 전달 행렬 방향은 레이저를 충족 방향으로 N
개의 작은 섹션으로 나누어 각 섹션에서는 소자 파라미터를
상수로 가정하여 결합모드 방정식의 해를 행렬 형태로 구현한
방법이다. 전달 행렬 방향은 충족 방향으로 변화하는 캐리어
밀도뿐만 아니라 광자 밀도 분포와 물질 부 분포 등을 고려할
수 있다.

식 (1)-(3)을 사용하여 문헌 전례 이상에서 각 모드의 이득
과 파장을 구하여 두 모드와 두 모드의 정규화된 이득 차이
\(\Delta \alpha_{s}(\delta s)\)를 구할 수 있다. 양 단면 격자 위상에 대하여 정규화된
이득 차이가 \(\Delta \alpha_{s}(\delta s)\)이 되면 단면 모드로 동적이고 이하
한 발전 모드로부터 발전 파장 분포를 구할 수 있다. 여기서
양 단면의 격자 위상의 전체 경우 수는 16×16로 하였고

표 1. 계산에 사용된 파라미터

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>µm</td>
<td>active region thickness</td>
</tr>
<tr>
<td>w</td>
<td>µm</td>
<td>active region width</td>
</tr>
<tr>
<td>L</td>
<td>µm</td>
<td>cavity length</td>
</tr>
<tr>
<td>(n_s)</td>
<td>3.7</td>
<td>group refractive index</td>
</tr>
<tr>
<td>A</td>
<td>2.5×10^8 s^{-1}</td>
<td>linear recombination coefficient</td>
</tr>
<tr>
<td>B</td>
<td>10^{-16} m^2 s^{-1}</td>
<td>bimolecular recombination coefficient</td>
</tr>
<tr>
<td>C</td>
<td>3×10^{41} m^{-5} s^{-1}</td>
<td>auger recombination coefficient</td>
</tr>
<tr>
<td>(\alpha_H)</td>
<td>5</td>
<td>linewidth enhancement factor</td>
</tr>
<tr>
<td>(N_0)</td>
<td>1.15×10^{24} m^{-3}</td>
<td>transparency carrier density</td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>0.35</td>
<td>confinement factor</td>
</tr>
<tr>
<td>(\alpha_s)</td>
<td>20×10^2 m^{-1}</td>
<td>internal loss</td>
</tr>
<tr>
<td>(g_{\nu})</td>
<td>2.7×10^{-20} m^{-2}</td>
<td>differential gain</td>
</tr>
<tr>
<td>(\lambda_B)</td>
<td>1.55 µm</td>
<td>bragg wavelength</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>5×10^{-23} m^3</td>
<td>nonlinear gain suppression coefficient</td>
</tr>
</tbody>
</table>
단일 모드 발전을 위한 이득 차이 Δ_{SM}는 0.1로 하였다.[3]

DFB 레이저의 특성을 해석할 때 전달 행렬 방법을 사용하면 공기기 내외 파워 분포를 구할 수 있다. 따라서 DFB 레이저 제한 단면의 출력 파워를 구할 수 있고 파워 추출 효율을 구할 수 있다. 파워 추출 효율은 전체 출력 파워에 대한 한계 단면의 출력 파워의 비로 다음과 같이 정의된다.

$$\text{파워 추출 효율} = \frac{\text{Max}(P_L, P_R)}{P_L + P_R} \quad (4)$$

여기서 P_L과 P_R은 그림 1에서 DFB 레이저의 왼쪽 단면과 오른쪽 단면의 출력 파워를 의미한다. 파워 추출 효율은 0.5에서 1까지의 값을 가지며 0.5는 양 단면의 출력 파워가 같음 을 의미하고 1은 전체 출력 파워가 한쪽 단면으로만 출력됨을 의미한다.

III. 계산 결과 및 검토

3.1. 파워 추출 효율(Power extraction efficiency)

그림 2는 k_d이 1.25일 때 양 단면 반사율 조합에 따른 IC DFB 레이저의 파워 추출 효율에 대하여 도시한 단일 모드 수용을 나타낸 그림이다. 그림 2(a)는 동일 시계에서 구한 값이고 그림 2(b)는 도시의 동일 시계에서 구한 값이다. 여기서 AR 단면의 반사율은 1%, CL은 13%, HR은 90%이다. 단일 반사율의 비대칭성이 커짐수록 파워 추출 효율이 높아질 수 있다. AR-HR의 경우 동일 시계에서 단일 모드 수용은 86%였고 파워 추출 효율이 0.8 이상인 단일 모드 수용은 75%였으나 경계에서 이 경우의 효율이 0.8 이상인 단일 모드 수용은 86%였다. 그러나 AR-CL의 경우는 단일 모드수용은 60%이었으나 파워 추출 효율이 0.8 이상인 단일 모드 수용은 86%여서 AR-HR의 경우에 비해 높았다. 양 단면이 대칭인 AR-AR의 경우 예상대로 파워 추출 효율이 매우 낮았다. 단일 모드 수용은 80%이었으나 파워 추출 효율이 0.7 이상을 나타내는 단일 모드 수용은 0%였다.

그림 2(b)는 3배의 동일 시계에서 양 단면 반사율 조합에 따른 IC DFB 레이저의 파워 추출 효율에 대하여 도시한 단 일 모드 수용을 나타낸 그림이다. 동일 시계에서 SHB 현상으로 인해 전체적인 단일 모드 수용은 감소하였다. AR-HR의 경우 단일 모드 수용은 50%로서 동일 시계에서의 단일 모드 수용 85%에 비하여 약 35%가 감소하였으나 단일 모드 조건을 만족하는 모든 경우는 파워 추출 효율이 0.8 이상임을 알 수 있다. 즉 동일 시계의 경우에 비교하면 단일 모드 조건을 만족하는 경우에는 파워 추출 효율이 약간 높아질 수 있었다. 양 단면 반사율 조합에 AR-CL의 경우 AR-AR의 경우보다 SHB 현상이 더욱 많이 발생하여 단일 모드 수용이 가장 낮고 또한 파워 추출 효율도 매우 떨어졌다. 반면 AR-AR의 경우는 동일 시계의 경우에 비교했을 때 SHB의 영향으로 수용은 줄었지만 단일 모드 조건을 만족하는 경우의 수용 중에서 높은 파워 수용을 가지는 경우의 수의 비는 증가함을 알 수 있었다. k_d이 0.8, 2.7일 경우에도 그림 2의 경우와 비슷하였고 AR-HR의 경우가 다른 반사율 조합에 비하여 파워 추출 효율이 높았다.
위 추출 효율이 가장 크게 나타났음을 알 수 있었다.

그림 3은 양 단면 반사율 조합이 그림 2의 경우와 같이 \(k_d \)이 1.25인 때 분력 전류 이상에서 주입 전류에 대하여 도시한 IC DFB 레이저의 단일 모드 수율을 나타내는 그림이다. 주입 전류가 증가함에 따라 단일 모드 수율은 감소함을 알 수 있다. 3배의 문맥 전류에서 단일 모드 수율은 AR-HR인 경우가 가장 크고 AR-AR인 경우는 AR-CL인 경우에 비하여 매우 작았다. 따라서 3배의 문맥 전류에서도 AR-HR인 경우가 그림 2(b)에서 볼 수 있듯이 문맥 전류인 경우에 마찬가지로 AR-AR과 AR-CL인 경우보다 파워 추출 효율이 매우 좋음을 알 수 있었다. 또한 AR-AR의 경우가 AR-CL의 경우보다 단일 모드 조건을 만족하는 경우의 파워 추출 효율이 약간 높을 것을 알 수 있었다. 그림 2와 3으로부터 양 단면 반사율 조합이 AR-HR인 경우가 단일 모드 수율이 높고 파워 추출 효율이 높을 것을 알 수 있었다.

그림 4는 IC DFB 레이저의 양 단면 반사율 조합이 AR(1%) - HR일 때 여러 가지 \(k_d \)에 대하여 파워 추출 효율의 함수로 도시한 단일 모드 수율을 나타내는 그림이다. 그림 4(a)와 (b)는 각각 문맥 전류와 3배의 문맥 전류에서 구한 값이다. \(k_d \)이 0.8인 경우 문맥 전류에서 단일 모드 수율은 약 86%이었으며 이 경우 모두 파워 추출 효율은 0.88 이상이었다. \(k_d \)이 1.25인 경우도 문맥 전류에서 단일 모드 수율은 약 86%이었으며 이 경우 모두 0.75 이상의 높은 파워 추출 효율을 보였다. 반면에 \(k_d \)이 2와 3인 경우 요구되는 파워 추출 효율이 키강수록 단일 모드 수율은 거의 선형적으로 감소함을 알 수 있다. 이것은 \(k_d \)이 2와 3인 경우 \(k_d \)이 0.8과 1.25인 경우에 비하여 SHB 현상으로 정자 일도가 DFB 레이저의 중앙 부분에 집중되게 된다. 따라서 \(k_d \)이 2와 3인 경우 0.8인 경우에 비하여 양 단면에서의 파워의 비대칭성이 상대적으로 작아지게 되기 때문에 파워 추출 효율이 작어지러라 생각된다. 그림 4(b)는 3배의 문맥 전류에서 파워 추출 효율을 나타내는 그림이다. \(k_d \)이 0.8인 경우 문맥 전류 이상에서는 SHB 현상으로 인하여 문맥 전류에 비하여 단일 모드 수율은 감소하지만 단일 모드 조건을 만족하는 모든 경우는 파워 추출 효율이 0.9 이상임을 알 수 있다. \(k_d \)이 1.25인 경우에도 단일 모드 수율은 감소하였지만 파워 추출 효율은 증가하였다. 즉 주입
전류가 증가하는 경우 단일 모드 수술은 감소하지만 단일 모드 수술을 만족하는 모든 경우의 파워 추출 효율은 약간 줄어진 것을 볼 수 있었다. \(k_{sr} \)가 2.3인 경우 SHB 현상이 심하게 발생하며 3배의 전류 전류에서 수술이 거의 0%였다.

그림 5는 \(k_{sr} \)가 1.25이고 양 단면 반사율 조정이 AR(1%).-HR일 때 파워 추출 효율과 정규화된 이득 마진의 분포를 나타내는 그림이다. 그림 5(a)는 전류 전류일 때 파워 추출 효율과 정규화된 이득 마진의 분포를 나타내는 그림으로 정규화된 이득 마진이 0.1 이상인 경우는 파워 추출 효율이 0.75 이상임을 알 수 있다. 그림 5(b)의 3배의 전류 전류에서는 정규화된 이득 마진이 0.1 이상인 모든 경우는 파워 추출 효율이 0.8 이상임을 알 수 있다. 그림 5(a)의 전류 전류에서 파워 추출 효율이 작은 대부분의 경우는 그림 5(b)의 3배의 전류 전류에서 정규화된 이득 마진이 급격하게 감소하여 단일 모드 조건을 만족하지 못했다. 즉 파워 추출 효율이 작은 대부분의 경우는 주입 전류의 증가에 따라 정규화된 이득 마진의 감소가 크게 발생하였다. 반면에 파워 추출 효율이 큰 대부분의 경우는 주입 전류에 따른 정규화된 이득 마진의 변화가 거의 발생되지 않았다. 그러나 양 단면 반사율 조정이 AR-CL과 AR-AR인 경우에는 파워 추출 효율의 크기와 관계없이 주입 전류가 증가하면 전체적으로 이득 마진이 줄어들었다. AR-CL과 AR-AR인 경우에서는 그림 5와 같은 주입 전류 증가에 따른 파워 추출 효율의 특성 변화는 거의 나타나지 않았다.

그림 6은 IC DFB 레이저의 양 단면 반사율 조정이 AR-\(k_{sr} \)이고 \(k_{sr} \)가 1.25일 때 여러 가지 AR 단면 반사율에 대하여 파워 추출 효율의 함수로 도시한 단일 모드 수술을 나타내는 그림이다. 그림 6(a)는 전류 전류에서의 파워 추출 효율을 나타내는 그림으로 AR 단면의 반사율에 따른 파워 추출 효율의 변화가 매우 작을음을 볼 수 있다. 그러나 AR 단면의 반사율이 작아질수록 양 단면 반사율의 비대칭성이 커지 예상대로 파워 추출 효율이 약간 증가함을 볼 수 있었다. 이것은 전류 전류에서 SHB 현상이 거의 발생되지 않고 HR 단면의 반사율에 비해 AR 단면의 반사율이 작아 AR 단면의 영향이 거의 없기 때문이라고 생각된다. 그림 6(b)는 3배의 전류 전류에서 여러 가지 AR 단면의 반사율에 대하여 파워 추출 효율의

그림 6. IC DFB 레이저의 양 단면 반사율 조정이 AR-\(k_{sr} \)이고 \(k_{sr} \)가 1.25일 때 여러 가지 AR 단면 반사율에 대하여 파워 추출 효율의 함수로 도시한 단일 모드 수술. (a) \(J/J_{th} = 1 \) (b) \(J/J_{th} = 3 \).
항수로 도시한 단일 모드 수용을 나타내는 그림이다. 그림 6(b)에서 볼 수 있듯이 AR 단면의 반사를 적절한 단일 모드 수용은 크게 증가하였다. 또한 AR 단면의 반사를 적절 수록 양 단면 반사를의 비대칭성이 커지게 파워 추출 효율도 약간 증가함을 알 수 있었다. 그림 6(a)의 텍스트 전원의 경우와 비교하였을 때 단일 모드 수용은 약간 증가하는 경우에서 3배의 텍스트 전원의 경우가 파워 추출 효율이 0.76 이상이었으나 3배의 텍스트 전원에서는 0.84 이상으로 파워 추출 효율 특성이 약간 증가함을 알 수 있었다.

그림 7은 IC DFB 레이저의 양 단면 반사를 조합이 AR-CL이고 X.L이 1.25일 때 여러 가지 AR 단면 반사를 동기하여 파워 추출 효율의 합산으로 도시한 단일 모드 수용을 나타낸 것이다. 그림 7(a)는 텍스트 전원에서의 파워 추출 효율을 나타내는 그림으로, AR-HR의 경우와 다르게 요구되는 파워 추출 효율이 커질수록 단일 모드 수용은 거의 선형적으로 감소함을 알 수 있다. AR 단면의 반사율이 0.17%인 경우 다른 AR 단면의 반사를 비해 단일 모드 수용이 매우 낮았다. 그림 7(b)는 3배의 텍스트 전원에서의 파워 추출 효율을 나타내는 그림으로, 텍스트 전원의 경우와 비교하였을 때 단일 모드 수용은 감소하였고 파워 추출 효율 특성은 약간 낮아졌다. 예를 들어 AR 단면의 반사율이 1%인 경우 텍스트 전원에서 단일 모드 수용은 59%가 반도 감소함 경우의 파워 추출 효율은 0.72이나 3배의 텍스트 전원에서는 단일 모드 수용은 21%가 반도 감소함 경우의 파워 추출 효율은 0.67로 주입 전원에 증가에 따른 파워 추출 효율 특성이 약간 낮아졌다.

IV. 발진 파장 분포

IC DFB 레이저의 발진 파장은 양 단면 격자가 위상에 따라 사전하게 된다. 따라서 IC DFB 레이저의 발진 파장은 양단 격자 위상의 조합에 따라 전체적인 분포로서 나타난다. 그림 8은 X.L이 1.25일 때 양 단면 반사를 조합에 따른 전체 격자 위상의 조합 경우의 수 중에서 단일 모드로 동작하는 경우의 수를 파장에 대하여 나타낸 것이다. 여기서 AR 단면의 반사율은 1%, CL은 32%, HR는 90%이다. 그림 8(a)와 (b)는 각각 텍스트 전원과 3배의 텍스트 전원에서의 파장 분포를 나타낸다. 3배의 텍스트 전원에서 단일 모드 수용은 텍스트 전원에 따라 단일 모드 수용보다 감소함으로 단일 모드로 동작하는 발진 파장의 분포는 그림 8(b)와 같이 전체적인 경우의 수가 감소함을 알 수 있다.

양 단면 반사를 조합이 AR-AR인 경우 텍스트 전원에서는 모드 degeneracy로 인하여 긴계 대역 양쪽 끝의 단파장 모드와 장파장 모드에 발진 파장이 집중되어 분포함을 알 수 있다. 그러나 텍스트 전원의 경우는 SHB 현상으로 인하여 모드 degeneracy가 상쇄되어 장파장 모드에 발진 파장이 집중적으로 분포함을 알 수 있다. AR-CL의 경우 텍스트 전원에서의 발진 파장의 분포는 단파장 모드와 장파장 모드에 존재하지만 AR-AR의 경우와 비교하였을 때 단면 반사를의 비대칭성 때문

그림 8. X.L이 1.25일 때 여러 가지 양 단면 반사를 조합에 대하여 도시한 IC DFB 레이저의 발진 파장 분포. (a) J/I = 1 (b) J/I = 3.
그림 9. 양 단면 반사율 조합이 AR-HR이고 k_0이 1.25일 때 여러 가지 AR 단면 반사율에 대하여 도시한 IC DFB 레이저의 발진 파장 분포. (a) J/J₀ = 1 (b) J/J₀ = 3.

그림 10. 양 단면 반사율 조합이 AR-CL이고 k_0이 1.25일 때 여러 가지 AR 단면 반사율에 대하여 도시한 IC DFB 레이저의 발진 파장 분포. (a) J/J₀ = 1 (b) J/J₀ = 3.

간 중합하였다. 양 단면 반사율 조합이 AR-CL인 경우 분석 전처리에서 49%이었고 반사 전처리 이상에서는 모드 degeneracy가 상쇄되어 0.5 nm 범위 내에 존재하는 발진 파장 분포가 91%로 크게 증가하였다. 양 단면 반사율이 AR-AR인 경우 양 단면 반사율이 AR-CL과 마찬가지로 0.5 nm 범위 내에 존재하는 발진 파장 분포는 분석 전처리에서는 50%이었으나 반사 전처리 이상에서는 87%로 크게 증가함을 알 수 있다.

그림 9는 양 단면 반사율 조합이 AR-HR이고 k_0이 1.25일 때 AR 단면 반사율에 따른 IC DFB 레이저의 발진 파장 분포를 나타내는 그림이다. 그림 9(a)와 (b)는 각각 물리 전처리와 3 배의 물리 전처리에서 발진 파장 분포를 나타내는 그림이다. 양 단면 반사율 조합이 AR-AR의 경우와는 다르게 발진 파장이 급지 대역 내에 넓게 분포함을 알 수 있다. 물리 전처리에서는 AR 단면의 반사율 변화에 따른 발진 파장의 분포가 크게 변화하지 않았다. 즉 AR 단면에 비해 HR 단면의 반사율이 상대적으로 크기 때문에 HR 단면의 각각 위치에 따라 발진 파장이 크게 변화함을 알 수 있다. 3배의 물리 전처리에서는 AR 단면의 반사율이 커질수록 단일 모드 조건을 만족하는 짧은파장의 경우의 수가 단파장의 경우의 수보다 증가함을 알 수 있었다.

그림 10은 양 단면 반사율 조합이 AR-CL이고 k_0이 1.25일 때 AR 단면 반사율에 따른 IC DFB 레이저의 발진 파장 분포를 물리 전처리와 3배의 물리 전처리에서 나타낸 그림이다. 양 단면 반사율 조합이 AR-HR인 경우와 다르게 대부분 단파장 모드와 장파장 모드 근처에 분포함을 알 수 있다. AR 단면의 반사율에 따라 단일 모드 조건을 만족하는 발진 파장 분포의 변화는 거의 발생하지 않았다. AR 단면의 반사율이 0.1%일 때 단일 모드 수가 낮아 단일 모드 조건을 만족하는 경우의 수가 다른 AR 단면의 반사율에 비해 작을 수 있다. 반면에 AR 단면의 반사율이 3%와 5%인 경우 0.1%에 비하여 단일 모드 수가 조금 증가하여 발진 파장 분포가 좀 더 넓은 영역에 존재하였다. 3배의 물리 전처리에서 AR-CL의 발진 파장 분포는 물리 전처리에서의 것과 다를 수 있다. 3배의 물리 전처리에서는 SHB 현상에 의해서 모드 degeneracy가 상쇄되어 단파장 모드는 거의 없어서 장파장 모드만이 존재하고 그 경우의 수도 감소함을 알 수 있다.

그림 11은 양 단면 반사율 조합이 AR(1%)-HR일 때 여러
그림 11. 양 단면 반사율 조합이 AR(1\%)\-HR일 때 여러 가지 k_c에 대하여 도시한 IC DFB 레이저의 발진 파장 분포. (a) $J/J_m = 1$ (b) $J/J_m = 3$.

그림 12. 양 단면 반사율 조합이 AR-CL일 때 여러 가지 k_c에 대하여 도시한 IC DFB 레이저의 발진 파장 분포. (a) $J/J_m = 1$ (b) $J/J_m = 3$.

가지 k_c에 대하여 IC DFB 레이저의 발진 파장 분포를 물적 전류와 3배의 물적 전류에서 나타낸 그림이다. 물적 전류에서 발진 파장 분포는 k_c이 0.8과 1.25인 경우는 급지 대역 내에 비교적 고르게 분포하고 있음을 알 수 있다. 그러나 k_c이 2와 3인 경우는 급지 대역 양쪽 끝 부분에 많이 분포하고 급지 대역 내에서는 발진 파장 분포가 작을을 볼 수 있었다. 3배의 물적 전류에서 k_c이 0.8과 1.25인 경우 발진 파장 분포는 물적 전류와 같은 변화는 없었으나 단일 모드 수율이 감소함을 알 수 있다. k_c이 2와 3인 경우는 SHB 현상이 심하게 발달하여 단일 모드 조건을 만족하는 경우가 거의 없었다. 그림 12는 양 단면 반사율 조합이 AR-CL일 때 여러 가지 k_c에 대하여 IC DFB 레이저의 발진 파장 분포를 물적 전류와 3배의 물적 전류에서 나타낸 그림이다. 물적 전류에서 양 단면 반사율 조합이 AR-HR의 경우는 다른 AR-CL인 경우는 발진 파장이 주로 급지 대역 양쪽의 단파장과 장파장 모드에 분포하고 있음을 알 수 있다. 또한 k_c이 커질수록 급지 대역의 폭이 증가함으로 발진 파장 분포도 점점 넓어질 것을 알 수 있다. 그러나 3배의 물적 전류에서는 SHB 현상으로 인하여 단일 모드 조건을 만족하는 경우가 크게 감소하였고 또한 모드 degeneracy가 상쇄되어 대부분 장파장 모드에 존재함을 알 수 있다.

IV. 결론

본 논문에서는 물적 전류에서 여러 가지 k_c과 양 단면 반사율 조합에 대하여 IC DFB 레이저의 파워 추출 효율과 발진 파장 분포를 구하였고 물적 전류 이상에서의 결과와 비교하였다. 또한 AR 단면의 반사율이 파워 추출 효율과 발진 파장 분포에 미치는 영향에 대하여 살펴보았다.

양 단면 반사율의 비대칭성이 큰 AR-HR인 경우가 높은 단일 모드 수율을 유지하면서 파워 추출 효율이 높을 수 있다고 했다. 양 단면 반사율 조합이 AR(1\%)-HR(90\%)이고 k_c이 0.8인 경우 물적 전류에서 단일 모드 조건을 만족하는 모든 경우는 파워 추출 효율이 0.88로 가장 높음을 알 수 있었다. 3배의 물적 전류에서는 파워 추출 효율은 0.9로 증가함을 알 수 있었다. k_c이 1.25인 경우에도 0.75로 비교적 큰 파워 추
줄 효율을 얻을 수 있었다. 반면에 \(\kappa_d \)가 2와 3인 경우 SHB 현상으로 인하여 광자 밀도가 DFB 레이저의 중앙 부근에 집중되어 양 단면에서 파워의 비대칭성이 상대적으로 작아지기 때문에 파워 추출 효율이 약아질을 수 있었다. 양 단면 반사율 조합이 대부분은 AR-AR인 경우 예상대로 파워 추출 효율이 매우 낮음을 알 수 있었다.

양 단면 반사율 조합이 AR-HR(90%)이고 \(\kappa_d \)가 1.25인 경우 AR 단면의 반사율은 0.1%에서 5%까지 변화시킬 때 AR 단면의 반사율이 적어질수록 양 단면 반사율의 비대칭성이 커져 파워 추출 효율도 약간 증가함을 알 수 있었다. 양 단면 반사율 조합이 AR-CL인 경우 AR 단면의 반사율에 따른 파워 추출 효율의 변화는 거의 발생되지 않았다.

양 단면 반사율 조합이 대칭인 AR-AR인 경우 분광 전류의 측정은 장과장 모드와 단과장 모드 근처에 존재하였으나 분광 전류 이상에서는 SHB 영향으로 인하여 모드 degeneracy가 상쇄되어 주로 장과장 모드에 존재하였다. 양 단면 반사율 조합의 비대칭성이 증가할수록 모드 degeneracy가 완화되어 발진 파장의 분포는 급지 대역 내에 전체적으로 고정계 분포하였다. 양 단면 반사율 조합의 비대칭성이 가장 큰 AR-HR인 경우 발진 파장 분포는 급지 대역 내에 고르게 분포하였고 분광 전류 이상에서도 단일 모드 조건을 만족하는 경우의 수만 감소하였고 발진 파장 분포는 거의 변하지 않았다. AR 단면의 반사율이 0.1%에서 5%까지 변화할 때 AR 단면의 반사율에 따른 발진 파장 분포의 변화는 매우 작았다. \(\kappa_d \)이 증가할수록 급지 대역의 폭이 넓어져 발진 파장의 분포도 넓은 영역에 분포함을 알 수 있었다.

감사의 글

본 연구는 2002년도 숭실대학교 교내연구비 지원에 의해 수행되었습니다.

참고문헌

Power extraction efficiency and lasing wavelength distribution of index-coupled DFB lasers above-threshold for various facet reflectivity combinations

Sang-Taek Kim and Boo-Gyoun Kim
School of Electronic Engineering, Soongsil University, Seoul, Korea
E-mail: bhkim@e.ssu.ac.kr

(Received March 24, 2003, Revised manuscript June 16, 2003)

We have calculated the power extraction efficiency and the lasing wavelength distribution of index-coupled DFB lasers at threshold for various κL and facet reflectivity combinations, and compared with those above-threshold. The power extraction efficiency increases as the asymmetry of the facet reflectivities increases. The power extraction efficiency above-threshold is slightly larger than that at threshold. Since the relative photon density around the center region increases as κL increases, the power extraction efficiency decreases. The uniformity of the distribution of lasing wavelength over the stop band increases due to the relief of mode degeneracy as the asymmetry of the facet reflectivities increases. In the case of AR-HR combination, the lasing wavelength distributions at threshold are similar to those above-threshold. However, in the case of AR-AR combination, the lasing wavelength at threshold is concentrated on both edges of the stop band, while it is concentrated only on the longer wavelength edge above-threshold. As κL increases, the range of the lasing wavelength distribution increases due to the increase of the stop band. The effect of AR reflectivity on the power extraction and the lasing wavelength distribution is very weak.

OCIS Codes: 140.3490, 140.5960, 140.2020, 230.1480.