DOI QR코드

DOI QR Code

Identification and phylogenetic analysis of the human endogenous retrovirus HERV-W pol in cDNA library of human fetal brain

인간태아의 뇌로부터 유래된 cDNA liberary에서 내생레트로바이러스 HERV-W pol 유전자의 동정과 계통

  • Kim, Heui-Soo (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Jeon, Seung-Heui (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Yi, Joo-Mi (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Tae-Hyung (Interdisciplinary Program of Bioinformatics, Pusan National University) ;
  • Lee, Won-Ho (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
  • Published : 2003.06.01

Abstract

A human endogenous retroviral family (HERV-W) has recently been described that is related to multiple sclerosis-associated retrovirus (MSRV) sequences that have been identified in particles recovered from monocyte cultures from patients with multiple sclerosis. Two pol fragments (HWP-FB10 and HWP-FBl2) of HERV-W family were identified and analysed by the PCR approach with cDNA library of human fetal brain. They showed 89 percent nucleotide sequence similarity with that of the HERV-W (accession no. AF009668). Deletion/insertion or point mutation in the coding region of the pol fragments from human fetal brain resulted in amino acid frameshift that induced a mutated protein. Phylogenetic analysis of the HERV-W family from GenBank database indicates that the HWP-FB10 is very closely related to the AC000064 derived from human chromosome 7q21-q22. Further studies on the genetic relationship with neighbouring genes and functional role of these new HERV-W pol sequences are indicated.

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller and J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Blond, J. L., F. Beseme, L. Duret, O. Bouton, F. Bedin, H. Perron, B. Mandran and F. Mallet. 1999. Molecular characterization and placental expression of HERVW, a new human endogenous retrovirus family. J. Virol. 73, 1175-1185
  3. Deb-Rinker, P., T. A. Klernpan, R. L. O'Reilly, E. F. Torrey and S. M. Singh. 1999. Molecular charac-terization of a MSRV-like sequence identified by RDA from monozygotic twin pairs discordant for schizophrenia. Genomics 61, 133-144 https://doi.org/10.1006/geno.1999.5946
  4. Garson, J. A., P. W. Tuke, P. Giraud, G. Paranhos-Baccaia and P. Perron. 1998. Detection of virione-associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet 351, 33-33 https://doi.org/10.1016/S0140-6736(98)24001-3
  5. Kazazian, H. H and J. V. Moran. 1998. The impact of the LI retrotransposons on the human genome. Nature Genet. 19, 19-24 https://doi.org/10.1038/ng0598-19
  6. Karlsson, H., S. Bachmann, J. Schroder, J. AcArthur, E. F. Torrey and R. H. Yolken. 2001. Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc. Natl. Acad. Sci. USA 98, 4634-4639 https://doi.org/10.1073/pnas.061021998
  7. Kim, H. S. 2001. Isolation and phylogeny of HERV-W pol fragments. AIDS Res. Hum. Retroviruses 17, 1665-1671 https://doi.org/10.1089/088922201753342086
  8. Kim, H. S., Y. Chen and P. Lonai. 1998. Complex regulation of multiple cytohesin like genes in murine tissues and cells. FEBS Lett. 433, 312-316 https://doi.org/10.1016/S0014-5793(98)00937-5
  9. Kim, H. S. and T. J. Crow. 1999. Presence and phy-logenetic analysis of HERV-K LTR on human X and Y chromosomes: evidence for recent proliferation. Genes Genet. Syst. 74, 267-270 https://doi.org/10.1266/ggs.74.267
  10. Kim, H. S. and T. J. Crow. 2000. Phylogenetic rela-tionships of a class of hominoid-specific retro-ele-ments (SINE-R) on human chromosome 7 and 17. Ann. Hum. Biol. 27, 83-93 https://doi.org/10.1080/030144600282406
  11. Kim, H. S., H. Hirai and O. Takenaka. 1996. Molecular features of the TSPY gene of gibbons and Old World monkeys. Chrom Res. 4, 500-506 https://doi.org/10.1007/BF02261777
  12. Kim, H. S., B. H. Hyun, J. Y. Choi and T. J. Crow. 2000a. Phylogenetic analysis of a retroposon family as represented on the human X chromosome. Gene Genet. Syst. 75, 197-202 https://doi.org/10.1266/ggs.75.197
  13. Kim, H. S., B. H. Hyun and T. J. Crow. 2000b. Phylogenetic analysis of retroposon family as exem-plified on human chromosome 13: further evidence for recent proliferation. Mol. Cells 10, 356-360
  14. Kim, H. S. and W. H. Lee. 2001. Human endogenous retrovirus HERV-W family: chromosomal localization, identification, and phylogeny. AIDS Res. Hum. Retro-viruses 17, 643-648 https://doi.org/10.1089/088922201300119752
  15. Kim, H. S., O. Takenaka and T. J. Crow. 1999. Isolation and phylogeny of endogenous retrovirus sequences belonging to the HERV-W family in pri-mates. J. Gen. Viral. 80, 2613-2619
  16. Kumar,S., K. Tamura and N. Nei. 1993. MEGA: Molecular evolutionary genetics analysis, version 1.01. The Pennsylvania State University, University Park, PA 16802
  17. Leib-Mosch, C., M. Bachmann, R. Brack-Werner, T. Werner, V. Erfle and R. Hehlmann. 1992. Expression and biological significance of human endogenous retroviral sequences. Leukemia 6, 72S-75S
  18. Perron, H., J. A Garson, F. Bedin, F. Beseme, G. Paranhos-Baccala, F. Komurian-Pradel, F. Mallet, P. W. Tuke, C. Voisset, J. L. Blond, B. Lalande, J, M. Seigneurin, B. Mandrand. and the collaborative re-search group on MS (1997) Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. Proc. Natl. Acad. Sci. USA 94, 7583-7588 https://doi.org/10.1073/pnas.94.14.7583
  19. Schon, U., W. Seifarth, C. Baust, C. Hohenadl, V. Erfle and C. Leib-Mosch. 2001. Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology 279, 280-291 https://doi.org/10.1006/viro.2000.0712
  20. Sugimoto, J., N. Matsuura, Y. Kinjo, N. Takasu, T. Oda and Y. Jinno. 2001. Transcriptionally active HERV-K genes: identification, isolation, and chromo-somal mapping. Genomics 72, 137-144 https://doi.org/10.1006/geno.2001.6473
  21. Sverdlov, E. D. 1998. Perpetually mobile footprints of ancient infections in the human genome. FEBS Lett. 428, 1-6 https://doi.org/10.1016/S0014-5793(98)00478-5
  22. Varmus, H. E. 1982. Form and function of retroviral proviruses. Science 216, 812-820 https://doi.org/10.1126/science.6177038
  23. Voisset, C., A Blancher, H. Perron, B. Mandrand, F. Mallet and G. Paranhos-Baccala. 1999. Phylogeny of a novel family of human endogenous retrovirus sequences, HERV-W, in humans and other primates. AIDS Res. Hum. Retroviruses 15, 1529-1533 https://doi.org/10.1089/088922299309810
  24. Voisset, C., O. Bouton, F. Bedin, L. Duret, B. Man-drand, F. Mallet and G. Paranhos-Baccala. 2000. Chromosomal distribution and coding capacity of the human endogenous retrovirus HERV-W family. AIDS Res. Hum. Retroviruses 16, 731-740 https://doi.org/10.1089/088922200308738
  25. Wimmer, R., S. Kirsch, G. A. Rappold and W. Schempp. 2002. Direct evidence for the Homo-Pan clade. Chromo Res. 10, 55-61 https://doi.org/10.1023/A:1014222311431
  26. Yi, J. M., H. M. Kim and H. S. Kim. 2001. Molecular cloning and phylogenetic analysis of the human endogenous retrovirus HERV-K LTR elements in various cancer cells. Mol. Cells 12, 137-141
  27. Yoder, J. A., C. O. Walsh and T. H. Bestor. 1997. Cytosine methylation and the ecology of intrage-nomic parasites. Trends Genet. 13, 335-340 https://doi.org/10.1016/S0168-9525(97)01181-5