DOI QR코드

DOI QR Code

Fabrication Technology for Improving Pattern Quality in Two-Dimensional Photonic Crystal Structure

2차원 광결정 제작에 패턴 특성을 향상시키기 위한 공정 기술

  • 김해성 (동국대학교 밀리미터파 신기술 연구 센터) ;
  • 신동훈 (동국대학교 밀리미터파 신기술 연구 센터) ;
  • 김순구 (동국대학교 밀리미터파 신기술 연구 센터) ;
  • 이진구 (동국대학교 밀리미터파 신기술 연구 센터) ;
  • 이범석 ((주)LG 전자 기술원) ;
  • 김혜원 ((주)LG 전자 기술원) ;
  • 이재은 ((주)LG 전자 기술원) ;
  • 한영수 ((주)LG 전자 기술원) ;
  • 최영호 ((주)LG 전자 기술원)
  • Published : 2003.06.01

Abstract

There are now many theoretical investigations and real manufactures for numerous applications of photonic crystals (PCs) associated with photonic band gap and photonic integrated circuits. However, there are some difficulties to design and fabricate the desired pattern quality. It is not easy to satisfy accurate critical dimension (CD) for patterns with arbitrary shapes and pitch sizes aligned in various directions. In this work, we report the optimum conditions to better fabricate and design, and greatly improve pattern quality in delineating two-dimensional (2D) PCs in the nanometer range using single- step e-beam lithography system with conventional exposure mode.

References

  1. Phys. Rev. Lett. v.58 Inhibited spontaneous emission in solid state physics and electronics E.Yablonovitch https://doi.org/10.1103/PhysRevLett.58.2059
  2. Appl. Phys. Lett. v.61 no.4 Existence of a photonic band gap in two dimensions R.D.Meade;K.D.Brommer;A.M.Rappe;J.D.Joannopoulos https://doi.org/10.1063/1.107868
  3. Phys. Rev. Lett. v.63 Photonic band structures: The face-centered cubic case E.Yablonovitch;T.J.Gmitter https://doi.org/10.1103/PhysRevLett.63.1950
  4. Phys. Rev. Lett. v.67 Photonic band structures: The face-centered cubic case employing non-spherical atoms E.Yablonovitch;T.J.Gmitter;K.M.Leung https://doi.org/10.1103/PhysRevLett.67.2295
  5. Science v.282 A dielectric omnidirectional reflector Y.Fink;J.N.Winn;S.Fan;C.Chen;J.Michel;J.D.Joannopoulos;E.L.Thomas
  6. Phys. Rev. B v.54 no.11 Microcavities in photonic crystals: mode symmetry, tenability, and coupling efficiency P.R.Villeneneuve;S.Fan;J.D.Joanopoulos
  7. Phys. Rev. Lett. v.89 no.21 A metamaterial for directive emission S.Enoch;G.Tayeb;P.Sabouroux;N.Guerin;P.Vincent https://doi.org/10.1103/PhysRevLett.89.213902
  8. Microelectron. Eng. v.57-58 On the influence of the e-beam writer address grid on the optical quality of high-frequency gratings B.Schnabel;E.B.Kley https://doi.org/10.1016/S0167-9317(01)00520-2
  9. J. Modern Opt. v.46 no.8 Multilevel diffractive elements in SiO₂by electron beam lithography and proportional etching with analogue negative resist P.Laakkonen;J.Lautanen;M.Schirmer;J.Turunen https://doi.org/10.1080/09500349908231336
  10. Handbook of microlithography, micromachining, and microfabrication P.Rai-Choudhury
  11. Microlithography fundamentals in semiconductor devices and fabrication technology S.Nonogaki
  12. The physics of Submicron Lithography K.A.Valiev
  13. Microelectron. Eng. v.34 Physical approximants to electron scattering G.Messina;A.Paoletti;S.Santangelo;A.Tucciarone https://doi.org/10.1016/S0167-9317(97)82564-6
  14. J. Vac. Sci. Technol. B v.13 Dose contribution of heating in electron-beam lithography A.A.Svintsov;S.I.Zaitsev https://doi.org/10.1116/1.588391
  15. J. Vac. Sci. Technol. B v.9 Optimizing electron beam lithography writing strategy subject to electron, optical, pattern, and resist constraints L.H.Veneklasen https://doi.org/10.1116/1.585370
  16. J. Vac. Sci. Technol. B v.17 Charging and discharging of electron beam resist films M.Bai;R.F.W.Pease;C.Tanasa;M.A.McCord;D.S.Pickard;D.Meisburger https://doi.org/10.1116/1.591091
  17. J. of KIEEME v.7 no.5 A study on the e-beam resist characteristics of plasma polymerized styrene D.C.Lee;J.K.Park
  18. J. of KIEEME v.11 no.10 Electric and electrochemical characteristic of PMMA-PEO gel electrolyte for rechargeable Lithium battery S.G.Park