DOI QR코드

DOI QR Code

A Study on the Properties of SiC Nanotubes: Molecular Dynamics Simulation

탄화규소 나노튜브의 특성에 관한 연구: 분자동역학 전산모사

  • 문원하 (중앙대학교 전자전기공학부) ;
  • 함정국 (중앙대학교 전자전기공학부) ;
  • 황호정 (중앙대학교 전자전기공학부)
  • Published : 2003.06.01

Abstract

We investigate the structure and properties of SiC (Silicon Carbide) nanotubes using molecular dynamics simulation based on the Tersoff bond-order potential. For small diameter tubes, the Si-C bond distance of SiC nanotubes decreases as the nanotube diameter is decreased, due to curvature of the nanotube surface. We find that Young's modulus of SiC nanotubes is somewhat smaller than that of the other nanotubes considered so far. However, Young's modulus for SiC nanotubes is larger than that of ${\beta}$-SiC and almost equal to the experimental value for SiC nanorod and SiC whisker. The strain energy of the SiC nanotubes is also lower than that of the other nanotubes. The lower strain energy of SiC nanotubes raises the possibility of synthesis of SiC nanotubes.

References

  1. Nature v.354 Helical microtubules of graphite carbon S.Iijima https://doi.org/10.1038/354056a0
  2. 전기전자재료학회논문지 v.14 no.9 Ni 박막 촉매 Etching 조건에 따른 탄소나노튜브 성장 류호진;장건익;정성희
  3. 전기전자재료학회논문지 v.14 no.10 유도결합형 플라즈마 화학기상 증착법을 이용한 탄소나노튜브의 성장 및 전계방출 특성 연구 김광식;류호진;장건익
  4. 한국전기전자재료학회 2002하계학술대회논문집 탄소나노튜브 표면의 STM 이미지를 통한 전기적 특성 연구 문원하;황호정
  5. Science v.269 Boron nitride nanotubes N.G.Chopra;R.J.Luyken;K.Cherrey;V.H.Crespi;M.L.Cohen;S.G.Louie;A.Zettl https://doi.org/10.1126/science.269.5226.966
  6. Science v.277 Synthesis of gallium nitride nanorods through a carbon nanotube confined reaction W.Q.Han;S.S.Fan;Q.Q.Li;Y.D.Hu https://doi.org/10.1126/science.277.5330.1287
  7. Solid State Comm. v.102 Theoretical investigation of graphitic carbon nitride and possible tubule forms Y.Miyamoto;M.L.Cohen;S.G.Louie https://doi.org/10.1016/S0038-1098(97)00025-2
  8. Phys. Rev. B v.50 Electronic properties of tubule forms of hexagonal BC₃ Y.Miyamoto;A.Rubio;S.G.Louie;M.L.Cohen https://doi.org/10.1103/PhysRevB.50.18360
  9. Phys. Rev. B v.50 Chiral tubules of hexagonal $BC_{2}N$ Y.Miyamoto;A.Rubio;M.L.Cohen;S.G.Louie https://doi.org/10.1103/PhysRevB.50.4976
  10. Nature v.360 Polyhedral and cylindrical structures of WS₂ R.Tenne;L.Margulis;M.Genut;G.Hodes https://doi.org/10.1038/360444a0
  11. Science v.267 High rate, gas phase growth of MoS₂nested inorganic fullerenes and nanotubes Y.Feldman;E.Wasserman;D.J.Srolovitz;R.Tenne https://doi.org/10.1126/science.267.5195.222
  12. J. Catal. v.200 The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential C.Pham-Huu;N.Keller;G.Ehret;M.J.Ledoux https://doi.org/10.1006/jcat.2001.3216
  13. Appl. Phys. Lett. v.80 Computational designing of graphitic silicon carbide and its tubular forms Y.Miyamoto;B.D.Yu https://doi.org/10.1063/1.1445474
  14. Phys. Rev. B v.39 Modelling solid-state chemistry: interatomic potentials for multicomponent systems J.Tersoff https://doi.org/10.1103/PhysRevB.39.5566
  15. Phys. Rev. Lett. v.61 Empirical interatomic potential for carbon, with applications to amorphous carbon J.Tersoff https://doi.org/10.1103/PhysRevLett.61.2879
  16. Phys. Rev. Lett. v.56 New empirical model for the structural properties of silicon J.Tersoff https://doi.org/10.1103/PhysRevLett.56.632
  17. Phys. Rev. B v.52 Atomistic simulation of thermomechanical properties of ß-SiC M.Tang;S.Yip https://doi.org/10.1103/PhysRevB.52.15150
  18. Phys. Rev. B v.49 Structural and electronic properties of cubic, 2H, 4H, and d 6H SiC C.H.Park;B.H.Cheong;K.H.Lee;K.J.Chang
  19. Poly-morphism and Polytypism in Crystals A.R.Verma;R.Krishna
  20. Phys. Rev. B v.44 Calculated elastic constants and deformation potentials of cubic SiC W.R.L.Lambrecht;B.Segall;M.Methfessel;M.van Schilfgaarde https://doi.org/10.1103/PhysRevB.44.3685
  21. Phys. Rev. Lett. v.76 Nanomechanics of carbon tubes: instabilities beyond the linear response B.I.Yakobson;C.J.Brabec;J.Bernholc https://doi.org/10.1103/PhysRevLett.76.2511
  22. Phys. Rev. Lett. v.80 Elastic properties of C and $B_{x}C_{y}N_{2}$ composite nanotubes E.Hernandez;C.Goze;P.Bernier;A.Rubio https://doi.org/10.1103/PhysRevLett.80.4502
  23. CRC Materials Science and Engineering Hand-book J.F.Shackelford;W.Alexander
  24. Science v.277 Nanobeam mechanics: Iasticity,strength and toughness of nanorods and nanotubes E.W.Wong;P.E.Sheehan;C.M.Lieber https://doi.org/10.1126/science.277.5334.1971
  25. J. Mater. Sci. v.20 Tensile mechanical properties of SiC whiskers J.J.Petrovic;J.V.Milewski;D.R.Rohr;F.D.Gac https://doi.org/10.1007/BF01026310
  26. Phys. Rev. B v.63 Tubular structures of silicon G.Seifert;Th.Kohler;H.M.Urbassek;E.Hernandez;Th.Frauenheim https://doi.org/10.1103/PhysRevB.63.193409
  27. Phys. Rev. B v.60 Stability and electronic structure of GaN nanotubes from density-functional calculations S.M.Lee;Y.H.Lee;Y.G.Hwang;J.Elsner;D.Porezag;Th.Frauenheim https://doi.org/10.1103/PhysRevB.60.7788