FRF Distortion Caused by Exponential Window Function on Impact Hammer Testing and Its Solution

지수창함수를 사용한 임팩트햄머 실험에서 주파수응답함수의 왜곡과 개선책

  • 안세진 (부산대학교 대학원 기계설계공학과) ;
  • 정의봉 (부산대학교 대학원 기계공학부)
  • Published : 2003.05.01


Exponential window function Is widely used In impact hammer testing to reduce leakage error as well as to get a good S/N ratio. The larger its decaying rate is, the more effectively the leakage errors are reduced. But if the decay rate of the exponential window is too large, the FRF is distorted. And the modal parameters of the system can not be exactly identified by modal analysis technique. Therefore, it is a difficult problem to determine proper decay rate in impact hammer testing. In this paper, amount of the FRF distortion caused by exponential window is theoretically uncovered. A new circle fitting method is also proposed so that the modal parameters are directly extracted from impulse response spectrum distorted by the exponential-windowed impulse response data. The results by the conventional and proposed circle fitting method are compared through a numerical example.


  1. Ewins, D. J., 1986. Modal Testing: Theory and Practice, Research Studies Press LTD., England.
  2. Randall, R. B., 1987, Frequency Analysis, B & K LTD., Denmark.
  3. McConnell, K. G., 1995. Vibration Testing: Theory and Practice. John Wiley & Sons INC., New York.
  4. 정의봉, 안세진, 장호엽, 장진혁, 2001, “디지털 푸리에 변환에서 누설오차의 개선,” 한국소음진동공학회논문집, 제 11권, 제 3호, pp. 455-460.
  5. 안세진, 정의봉, 2002, “충격햄머 실험에 의한 1자유도 주파수응답함수의 오차와 해결 방법,” 한국소음진동공학회논문집, 제 12권 제 9호, pp. 702-708.
  6. 안세진, 정의봉, 2002, “최적화 기법을 이용한 다자유도 충격응답 스펙트럼의 오차 개선,” 한국소음진동공학회논문집, 제 12권 제 10호, pp. 792-798.
  7. Burgess, J. C., 1975, "On Digital Spectrum Analysis of Periodic Signals," The Journal of the Acoustical Society of America, Vol. 58, No. 3. pp. 556-567.
  8. Qiu, Z. L. and Tieu, A. K., 1999, "A Method to Obtain Exact Frequency Characteristics of Harmonic Signals," Mechanical Systems and Signal Processing, Vol. 13, No. 3, pp. 523-529.
  9. Dishan, H., 1995, "Phase Error in Fast Fourier Transform Analysis." Mechanical System and Signal Processing Vol. 9. No. 2, pp. 113-118.
  10. Fladung, W. and Rost. R., 1997, "Application and Correction of the Exponential Window for Frequency Response Function." Mechanical Systems and Signal Processing, Vol. 11. No. 2. pp. 23-36.
  11. 長松昭男, 1985, モ-ド 解析, 培風館, 日本.
  12. Maia, N. M. and Silva. J. M., 1998, Theoretical and Experimental Modal Analysis, Research Studies Press Ltd..
  13. Bendat, J. S. and Piersol, A. G., 1986, Random Data: Analysis and Measurement Procedures, Chapter 6, John Wiley & Sons, Inc.