Cloning Genes Involved in Aniline Degradation from Delftia acidovorans.

Delftia acidovorans로부터 Aniline 분해관련 유전자의 분리

  • 김현주 (한국화학연구원 생물화학부) ;
  • 김성은 (충남대학교 농생물학과) ;
  • 김정건 (서울대학교 응용생물화학부) ;
  • 김진철 (한국화학연구원 생물화학부) ;
  • 최경자 (한국화학연구원 생물화학부) ;
  • 김흥태 (충북대학교 농생물학과) ;
  • 황인규 (서울대학교 응용생물화학부) ;
  • 김홍기 (충남대학교 농생물학과) ;
  • 조광연 (한국화학연구원 생물화학부)
  • Published : 2003.03.01


Delftia acidovorans 51-A isolated from river water degrades aniline. In order to clone genes involved in aniline degradation, transposon Tn5-B20 was inserted into the strain 51-A to generate a mutant strain 10-4-2 that cannot utilize aniline as a carbon source. The mutant strain was not an auxotroph but could not degrade aniline. Southern hybridization analysis indicated that the transposon was inserted into the mutant bacterial DNA as a single copy. Flanking DNA fragment of Tn5-B2O insertion was cloned and sequenced. DNA sequence analysis revealed three ORFs encoding TdnQ, TdnT, and TdnA 1 that arc responsible for catechol formation from aniline through oxidative deamination. The analysis also confirmed that Tn5-B2O was inserted at the immediate downstream of tdnA1. The result suggests that the transposon insertion behind tdirA1 disrupted the pathway of the catechol formation from aniline, resulting in the mutant phenotype, which cannot degrade aniline. A large plasmid over 100-kb in size was detected from D. acidovorans 51-A and Southern hybridization analysis with Tn5-B2O probe showed that the transposon was inserted on the plasmid named pTDN51. Our results indicated that the tdn genes on pTDN51 of D. acidovorans 51-A are involved in aniline degradation.


  1. Gene v.70 Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria Keen,N.T.;S.Tamaki;D.Kobayashi;D.Trollinger
  2. FEMS Microbiol. Lett. v.111 Isolation and characterization of a subsurface bacterium that degrades aniline and methylanilines Konopka,A.
  3. Carcinogenesis v.17 Neoplastic transformation and DNA-binding of 2-chloroaniline in SV40-immortalized human uroepithelial cell lines Swaminathan, S.;S. M. Frederickson;J. F. Hatcher;C. A. Reznikoff;M. A. Butler;K. L. Cheever;R. E. Savage
  4. Water Sci. Technol v.36 Biodegradation of aniline Gheewala,S.H.;A.P.Annachhatre
  5. Gene v.81 New derivatices of transposon Tn5 suitable for mobilization of replicons generation of operon fusions and induction of genes in Gramnegative bacteria Simon, R.;J. Quandt;W. Klipp.
  6. Gene v.133 Construction and use of a new broad-host-range lacZ transcriptional fusion vector Parales,R.E.;C.S.Harwood
  7. Arch. Microbiol. v.155 Degradation of aniline and monochlorinated anilines by soil-born Pseudomonas acidovorans strains Loidl, M.;c. Hinteregger;G. Ditzelmuller;A. Ferschl;F. Streichsbier
  8. J. Gen. Microbiol. v.133 pTDN1, a catabolic plasmid involved in aromatic amine catabolism in Pseudomonas putida mt-2 McClure, N. C.;W. A. Venables.
  9. Biochem. Biophys. Res. Commun v.15 Isolation and properties of an iron-protein from the (reduced coenzyme Q )-cytochrome C reductase complex of the respiratory chain Rieske,J.S.;D.H.MacLennan;R.Coleman
  10. Kor, J. Appl. Microbiol. Biotechnol. v.28 Isolation and characterization of Stenotrophomonas maltophilia strains capable of degrading aniline Kim, H.-J.;J.-C. Kim;H. T. Kim;G. J. Choi;D. Choi;H. G. Kim;K. Y. Cho.
  11. J. Bacteriol. v.179 Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDNI) Fukumori,F.;C.P.Saint.
  12. Microbiology v.143 Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA Fujii, T.;M. Takeo;Y. Maeda.
  13. Gene v.33 Improved M13 phage cloning vectors and host strains: nucleotide sequences fo the M13mp18 and pUC vectors Yanisch-Perron, C.;J. Vieira;J. Messing.
  14. Molecular cloning: a laboratory manual(2nd ed.) Sambrook,J.;E.F.Fritsch;T.Maniatis
  15. Appl. Environ. Microbiol v.65 The alkene monooxygenase from Xanthobacter strain Py2 is closely related to aromatic monooxygenases an catalyzes aromatic monohydroxylation of benzene, toluene, and phenol Zhou,N.Y.;A.Jenkins;C.K.N.Chan Kwo Chion;D.J.Leak
  16. Arch. Microbiol v.153 Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini Schneel,S.;B.Schink
  17. Appl. Environ. Microbiol v.67 Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae Boon,N.;J.Goris;P.De Vos;W.Verstraete;E.M.Top
  18. Appl. Environ. Microbiol v.48 Mechanisms and pathway of aniline elimination from aquatic environments Lyons,C.D.;S.Katz;R.Bartha
  19. J. Bacteriol v.145 Rapid procedure for detection and isolation of large and small plasmids Kado,C.I.;S.T.Liu
  20. Agric. Biol. Chem. v.48 Rapid biodegradation of aniline by Frateuria species ANA-18 and its aniline metabolism Aoki, K.;K. Ohtsuka;R. Shinke;H. Nishima.
  21. Food. Chem. Toxicol. v.28 Toxicity of p-chloroaniline in rats and mice Chabra, R. S.;M.Thompson;M. R. Elwell;A. C. Peters.
  22. Methods Microbiol v.17 Conjugation Willets,N.
  23. J. Agric. Food Chem. v.26 Adsorption and transformation of four substituted anilines in soil Bollag,J.M.;P.Blattmann;T.Laanio
  24. FEMS Microbiol. Rev. v.103 Microbial breakdown o fhalogenated aromatic pesticides an related compounds Haggblom,M.M.
  25. strain YAA. J. Ferment. Bioeng v.85 Sequence analysis of the genes encoding a multicomponent dioxygenase involved in oxidation of aniline and o-toluidine in Acinetobacter sp. Takeo,M.;T.Fujii;Y.Maeda
  26. Bio/Technology v.1 A broad host range mobilization sysem for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria Simon,R.;U.Priefer;A.Puhler
  27. Appl. Environ. Microbiol. v.50 Microbial mineralization of ring-substituted aniliness through an ortho-cleavage pathway Zeyer, J.;A. Wasserfallen;K. N. Timmis.
  28. Herbicides: chemistry, degradation, and mode of action(2nd ed.) Keamey,P.C.;D.D.Kaufman