Application and High Throughput Screening of DPPH Free Radical Scavenging Activity by Using 96-Well Plate

96-well plate를 이용한 DPPH free radical 소거활성 측정과 그 응용

  • Choi, Jung-Sup (Korea Research Institute of Chemical Technology) ;
  • Oh, Jung-Im (Korea Research Institute of Chemical Technology) ;
  • Hwang, In-Taek (Korea Research Institute of Chemical Technology) ;
  • Kim, Sung-Eun (Division of Applied Biotechnology, College of Agriculture, Chonbuk National University) ;
  • Chun, Jae-Chul (Division of Applied Biotechnology, College of Agriculture, Chonbuk National University) ;
  • Lee, Byung-Hoi (Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Seok (Korea Research Institute of Chemical Technology) ;
  • Kim, Tae-Joon (Korea Research Institute of Chemical Technology) ;
  • Cho, Kwang-Yun (Korea Research Institute of Chemical Technology)
  • 최정섭 (한국화학연구원 생물기능연구팀) ;
  • 오정임 (한국화학연구원 생물기능연구팀) ;
  • 황인택 (한국화학연구원 생물기능연구팀) ;
  • 김성은 (전북대학교 응용생물공학부) ;
  • 전재철 (전북대학교 응용생물공학부) ;
  • 이병회 (한국화학연구원 생물기능연구팀) ;
  • 김진석 (한국화학연구원 생물기능연구팀) ;
  • 김태준 (한국화학연구원 생물기능연구팀) ;
  • 조광연 (한국화학연구원 생물기능연구팀)
  • Published : 2003.06.30


A 96-well plate was applied to determine the DPPH free radical scavenging activity using 107 plant-specific enzyme inhibitors and 100 unknown plant-originated extracts. The final optimum volume was $250{\mu}L$ containing $100{\mu}M$ DPPH ethanolic solution at pH 7.8. In this condition, the radical scavenging activities were significantly increased by two known antioxidants consisting of ascorbate and a-tocopherol in a concentration-dependent manner. Among the 107 inhibitors, ampicillin and gallic acid showed 90.2% and 92.6% antioxidant activity at $100{\mu}M$, respectively, and these results were consisted with previous findings. In the tested 100 natural materials at $50{\mu}g/mL$, antioxidant activity of AT-407 resulted in the highest of 90.1%, and 10 extracts including AT-388 and AT-443 showed over 70%. Our results suggest that the use of 96-well plate for determining DPPH free radical scavenging activity would be a suitable method to select antioxidant-like substances of both synthetic compounds and natural products.


  1. Abe, N., T. Murata, and A. Hirota (1998b) Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Biosci. Biotech. Biochem. 62:661-666
  2. Baek, S. H., I. S. Kwon, T. I. Park, S. J. Yun, J. K. Kim, and K. G. Choi(2000) Activities and isozyme profiles of antioxidant enzymes in intercellular compartment of overwintering barley leaves. J. Biochem. Mol. BioL 33:385~390
  3. Battle, R. W., J. K. Gaunt, and D. L. Laidrnan (1976) The effect of photoperiod on endogenous $\alpha$-tocopherol and plastochromanol in leaves of Xanthium strumarisum L. (Cocklebur). Biochem. Soc. Trans. 4:484
  4. Bhasin, G., H. Kauser and M. Athar, (2002). Low iron state is associated with reduced tumor promotion in a two-stage mouse skin carcinogenesis modeL Food and Chemical Toxicol. 40:1105 - 1111
  5. Janiszowska, W., and J. F. Pennock (1976) The biochemistry of vitamin E in plants, in Vitamins and Hormones: Advance in Research and Applications. Munson, P. L., Glover, J., Diczfauly, E., and Olson, R. E, Eds., vol. 34, Academic Press, New York. 77
  6. Kweon, M. H., H. J. Hwang, and H. C. Sung (2001) Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo(Phyllostachys edulis). Agric. Food Chem. 49:46464655
  7. Oberley, T. D., J. L. Schultz, N. Li, and L. W. Oberley (1995) Antioxidant enzyme levels as a function of growth state in cell culture. Free Radical BioI. Med. 19:53-65
  8. Salin, M. L. (1988) Toxic oxygen species and protective systems of the chloroplasts. Physiol. Plant 72:681
  9. 허선경, 김선, 허연회, 안수미, 이병곤, 이상국(2001) 포도나무가지 추출물의 프리라디컬 소거작용 및 염증발현 매개인자 생성 억제 효과. 응용약물학회지. 9:188-193
  10. 황인택, 최정섭, 박상희, 이관휘, 이병회, 홍경식, 조광연 (2001) 식물 특정효소저해제의 생물 활성조사에의한 신규제초제 작용점 탐색. 한국농약과학회지. 5:36-45
  11. Blois, M. S. (1958) Antioxidant determination by the use of a stable free radical. Nature. 181:1199-1200
  12. Kikuzaki, H., M. Hisamoto, K. Hirose, K. Akiyama, and H. Taniguchi (2002)Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem. 50:2161-2168
  13. Rohrdanz, E., and R. Kahl (1998) Alteration of antioxidant enzymeexpression in response to hydrogen peroxide. Free Radical Biol. Med. 24:27-38
  14. Traber, M. G. (1997) Vitamin E, oxidative stress and 'healthy ageing'. Eur. J. Clin. Invest. 27:822-824
  15. Carrer, R., G. Deby-Dupont, C. Deby, L. Jadoul, M Mathy (1998) Oxidant-scavenging activities of beta-lactam agents. Eur. J. Clin. Microbiol. Infect Dis. 17:43-46
  16. Benzi, G., and A. Moretti (1995) Are reactive oxygen species involved in Alzheimer's disease? Neurobiol. Aging 16:661-674
  17. Padh, H. (1990) Cellular functions of ascorbic acid. Biochem. Cell BioI. 68:1166
  18. 김안근, 김지현 (2001) 산화적 스트레스 및 항산화제가 항산화효소 활성에 미치는 영향. 응용약물학회지. 9:249-257
  19. Martin, T. S., H. Kikuzaki, M. Hisamoto, and N. Nakatani (2000) Constituents of Amomum tsao-ko and their radical scavenging and antioxidant activities. JAOCS. 77:No 6
  20. Shull S., N., H. Heints, M. Periasamy, M. Manohar, Yvonne MW Janssen, Joanne P Marsh, and Brooke T Mossman (1991) Differential regulation of antioxidant enzymes in response to oxidants. J. Biol, Chem. 266:24398- 24403
  21. Abe, N., and A. Hirota (2002) Chemical studies of the radical scavenging mechanism of bisorbicillinol using the 1-1-diphenyl-2-picrylhydrazyl radical. Chem. Commun. pp.662-663
  22. No, J. K., D. Y. Soung, Y. J. Kim, K. H. Shim, Y. S. Jun, S. H. Rhee, T. okozawa, and H. Y. Chung (1999) Inhibition of tyrosinase by green tea components. Life Sci. 21:241-246
  23. Pastore, D., D. Trono, L. Padalino, S. Simone, D. Valenti, N. DiFonzo, S. Passarella (2000) Inhibition by $\alpha$-tocopherol and L-ascorbate of linoleate hydroperoxidation and $\beta$-carotene bleaching activities in durum wheat semolina. J. Cereal Sci. 31:41-54
  24. Foyer, C. H, and B. Halliwell (1976) Presence of glutathione and glutathione reductase in chloroplasts:a proposed role in ascorbic acid metabolism. Planta 133:21
  25. Ottino, P., J. R. Duncan (1997) Effect of a -tocopherol succinate on free radical and lipid peroxidation levels in BL6 melanoma cells. Free Radical Bio. Med. 22:1145-1151
  26. Kwon, S. Y., Y. J. Jeong, H. S. Lee, J. S. Kim, K. Y. Cho, R. D. Allen, and S. S. Kwak (2002) Enhanced tolerances of transgenic tabacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen mediated oxidative stress. Plant, Cell and Environ. 25:873-882
  27. Ogata, S., M. Takeuchi, S. Teradaira, N. Yamamoto, K. Iwata, K. Okumura, and H. Taguchi (2002) Radical scavenging activities of niacin-related compounds. Bio. Biotechnol. Biochem. 66:641-645
  28. Groden, D., and E. Beck (1979) $H_2O_2$destruction by ascorbate-dependent systems from chloroplasts. Biochem. Biophys. Acta. 546:426
  29. Handelman, G. J., G. Cao, M. F. Walter, Z. D. Nightingale, G. L. Paul, R. L. Prior, and J. B. Blumberg (1999) Antioxidant capacity of oat (Avena sativa L.) extracts. I. Inhibition of low-density lipoprotein oxidation and oxygen radical absorbance capacity. J. Agric. Food Chem. 12:4888-4893.
  30. Abe, N., T. Murata, and A. Hirota (1998a) Novel oxidized sorbicillin dimers with 1,1-diphenyl-2-picrylhydrazyl- radical scavenging acuvity from a fungus. Biosci. Biotech. Biochem. 62:2120-2126
  31. Cuvelier, Marie-Elisabeth, H. Richard, and C. Berset (1992) Comparison of the antioxidative activity of some acid-phenols : structure-activity relationship. Biosci. Biotech. Biochem. 56:324-325
  32. Imai, Y., H. Kolb, and V. Burkart. (2002) Nitric oxide production from macrophages is regulated by arachidonic acid metabolites. Biochem. Biophysic. Res. Com. 197:105-109
  33. Nakano, Y., and K Asada (1980) Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant Cell Physiol. 21:1295
  34. Burdock, G.A, M.G. Soni and I.G. Carabin (2001) Evaluation of health aspects of kojic acid in food. Reg. Toxicol. Pharmacol. 33:80-101