Mechanism of Sulfonylurea Herbicide Resistance in Broadleaf Weed, Monochoria korsakowii

광엽잡초 물옥잠의 Sulfonylurea 제초제에 대한 저항성 작용기작

  • Park, Tae-Seon (Department of Crop Protection, National Institute of Agricultural Science and Technology, RDA) ;
  • Lhm, Yang-Bin (Department of Crop Protection, National Institute of Agricultural Science and Technology, RDA) ;
  • Kyung, Kee-Sung (Department of Crop Protection, National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Su-Heon (Department of Crop Protection, National Institute of Agricultural Science and Technology, RDA) ;
  • Park, Jae-Eup (Department of Crop Protection, National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Tae-Wan (Department of Plant Resources Science Hankyong National University) ;
  • Kim, Kil-Ung (Dept. of Agronomy, College of Agriculture, Kyungpook National University)
  • 박태선 (농업과학기술원 작물보호부) ;
  • 임양빈 (농업과학기술원 작물보호부) ;
  • 경기성 (농업과학기술원 작물보호부) ;
  • 이수헌 (농업과학기술원 작물보호부) ;
  • 박재읍 (농업과학기술원 작물보호부) ;
  • 김태완 (한경대학교 농업생명과학대) ;
  • 김길웅 (경북대학교 농업생명과학대학)
  • Published : 2003.12.30

Abstract

This experiment was carried out to study the resistant mechanism of sulfonylurea(SU) herbicides to Monochoria korsakowii occurring in the rice fields of Korea. The activity of acetolactate synthase(ALS), absorption and translocation of $[^{14C}]$bensulfuron-methyl, and DNA sequence of ALS genes were studied. The apparent SU resiatance to Monochoria korsakowii was confirmed in greenhouse testes. Fresh weight accumulation$(GR_{50})$ in the resistant biotype was about 5- to 64-fold higher in the presence of six SU herbicides compared to the susceptible biotype. The ALS activity isolated from the resistant biotype to herbicides tested was less sensitive than that of susceptible biotype. The concentration of herbicide required for 50% inhibition of ALS activity$(I_{50})$ was 14- to 76-fold higher as compared to the susceptible biotype. No differences were observed in the rates of $[^{14C}]$bensulfuron uptake and translocation. However, the DNA sequence from the resistant biotype differed from that of the susceptible biotype by single nucleotide substitution at three amino acid each in the middle region excluding the ends of ALS genes. We found three point mutations causing substitution of serine for threonine at amino acid 168, arginine for histidine at amino acid 189, and a aspartic acid for phenylalanine at amino acid 247, respectively, in the resistant biotype.

References

  1. Adkins, S. W., D. Wills, M. Boersma, S. R. Walker, G. Robinson, R. J. Mcleod, and J. P. Einam (1997) Weeds resistant to chlorsulfuron and atrazine from the north-east grain region of Australia. Weed Res. 37:343-349
  2. Ballard, T. O., M. E. Foley, and T. T. Bauman (1995) Absorption, translocation, and metabolism of imazethapyr in common ragweed(Ambrosia-artemisiifolia) and giant ragweed (Ambrosia trifida). Weed Sci. 43:572-577
  3. Boutsalis, P., J. Karotam, and S. B. Powles (1999) Molecular basis of resistance to ALS e-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii. Pesticide Sci. 55:507-516
  4. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254
  5. Coupland, D., P. J. W. Lutman, and C. Heath (1990) Uptake, translocation, and metabolism of mecoprop in a sensitive and a resistant biotype of Stellaria 29
  6. Gaeddert, J. W., D. E. Peterson, and M. J. Horak (1997) Control and cross-resistance of an acetolactate synthase inhibitor-resistan Palmer amaranth(Amaranthus palmeri) biotype. Weed Tech. 11:132-137
  7. Guttieri, M. J., C. V. Eberlein, C. A. Mallory Smith, D. C. Thill, and D. L. Hoffman (1992) DNA sequence variation in domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40:670-676
  8. Guttieri, M. J., C. V. Eberlein, and D. C. Thill (1995) Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in Kochia(Kochia scoparia) biotypes. Weed Sci. 43:175-178
  9. Heap, I. (1997) The occurrence of herbicide-resistant weeds worldwide. Pestic. Sci. 51:235-243
  10. Heap, I. (2003) International Survey of Herbicide Resistant Weeds. http://www. weedscience.org/in.asp
  11. Itoh, K. (2000) Relationship between breeding system and gene dispersal of sulfonylurea resistant paddy weeds. In 3rd International Weed Science Congress held at Foz Do Iguassu, Brazil. pp.144-145
  12. Kohara, H., K. Konno and M. Takekawa (1999) Occurrence of sulfonylurea-resistant biotypes of Scripus juncodies Roxb. var. ohwianus T. Koyama in paddy fields of Hokkaido prefecture, Japan. J. Weed Sci.& Tech. 44(3):228 -235
  13. Lovell, S. T., L. M. Wax, D. M. Simpson, and M. McGlamery (1996) Using the in vivo. acetolactate synthase (ALS) assay for identifying herbicide-resistant weeds. Weed Tech. 10:936-942
  14. Manley, B. S., K. Hatzios, and H. Wilson P. (1999) Absorption, translocation, and metabolism of chlorimuron and imidazolinone-resistant and -susceptible smooth pigweed(Amarantus hushybridus). Weed Tech. 13:359-764
  15. Park, T. S., C. S. Kim, J. P. Park, Y. K. Oh, and K. U. Kim (1999) Resistant biotype of Monochoria korsakowii against sulfonylurea herbicides in the reclaimed paddy fields in Korea. Proc. 17th APWSS Conf. pp. 251-254, Bangkok
  16. Paul B., R. W. Alison, A. R. Barbara, V. S. Mani, and L. S. Daniel (1995) A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. Biological; chemi. 270:17381-17385
  17. Prather, T. S., J. M. Ditomaso and J. S. Holt (2000) Herbicide resistance : Definition and management strategies. http://anrcatatalog.udavis.edu
  18. Ray, R. B. (1984) Site of action of chlorsulfuron. Plant Physiol. 75:827-831
  19. Saari, L. L., J. C. Cotterman, and M. M. Primiani (1990) Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia. Plant Physiol. 93:55-61
  20. Saari, L. L., J. C. Cotterman, W. F. Smith, and M. M. Primiani (1992) Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pesticide Biochemi. and PhysioI. 42:110-118
  21. Shaner, D. L. and R. G. Lym (1991) Mechanisms of resistance to acetolactate synthase /acetohydroxyacid synthase inhibitors. Proceedings of the Western Society of Weed Science, Seattle, Washington, USA, 12-14 March 1991. 44: 122-125
  22. Uchino, Guang-Xi Wang, and K. Itoh (2000) Sulfonylurea resistant biotypes of Lindernia pecies in the Tohoku region and their response to several herbicides. Weed Res.(Japan) 45(1):13-20
  23. Upshall, A., T. Gilbert, G. Saari, P. J. O'Hara, P. Weglenski, B. Berse, K. Miller, and W. E. Timberlake (1986) Molecular analysis of the Aspergillus nidulans. Mol Gen Genet. 204:349-354
  24. Wang, G. X., H. Kohara and K. Itoh (1997) Sulfonylurea resistance in a biotype of Monochoria korsakowii, an annual paddy weed in Japan. Brighton Crop Protection Conference-Weeds 1:311-318
  25. Westerfield, W. W. (1945) A colorimetric determination of blood acetoin. J. BioI. Chem. 161:495-502
  26. Yuyama T., S. Takeda, and R. C. Ackerson (1987) Uptake and distribution of bensuIfuron-methyl(DPX-F5384) in paddy rice. Proc. 11th Asian-Pac. Weed Sci. Soc.145-151
  27. 박태선, 권오도, 김창석, 박재읍, 김길웅 (1999) 한국 수도답에서 sulfonylurea 제초제에 대한 저항성 물달개비 출현. 한국잡초학회지 19(2):71-73
  28. 박태선, 권오도, 이도진, 변종영(2001) Sulfonylurea 계 제초제 저항성잡초 연구 현황과 전망. 한국잡초학회지 21(2):99-109