Effects of Cu (II)-exchanged Montmorillonite on Growth Performance, Intestinal Microflora, Bacterial Enzyme Activities and Morphology of Broilers

  • Xu, Z.R. (Animal Science College, Zhejiang University) ;
  • Ma, Y.L. (The Key Laboratory of Molecular Animal Nutrition Ministry of Education) ;
  • Hu, C.H. (Animal Science College, Zhejiang University) ;
  • Xia, M.S. (The Key Laboratory of Molecular Animal Nutrition Ministry of Education) ;
  • Guo, T. (Animal Science College, Zhejiang University) ;
  • Jin, H.L. (The Key Laboratory of Molecular Animal Nutrition Ministry of Education)
  • Received : 2003.05.21
  • Accepted : 2003.08.21
  • Published : 2003.11.01


Two hundred forty 1-d-old Arbor Acres broiler chicks were used to investigate the effects of Cu (II)-exchanged montmorillonite (CEM) or montmorillonite on the growth performance, intestinal microflora, bacterial enzyme activities and morphology of broilers. The chicks were assigned randomly into three groups with 80 chicks per treatment. The three dietary treatments were basal diet only (control group), basal diet +1 g $kg^{-1}$ montmorillonite, and basal diet +1 g $kg^{-1}$ CEM. The results showed that the addition of CEM to the diet increased significantly the body weight and feed efficiency, but a similarly significant increase was not found in broilers fed the diet containing montmorillonite. Supplementing the CEM in the diet of broilers also decreased the numbers of Clostridium perfringens and Escherichia coli in the small intestine and cecum. The addition of either CEM or montmorillonite to the diet depressed the activities of $\beta$-glucosidase and $\beta$-glucuronidase in the small intestinal and cecal contents. Data of villus height and crypt depth for duodenum, jejunum and ileum indicated that dietary addition of CEM or montmorillonite improved the small intestinal mucosal morphology.


  1. Albengres, E., S. Urien, J. P. Tillement, P. Oury, S. Decourt, B. Flouvat and K. Drieu. 1985. Interactions between smectite, a mucus stabilizer and acidic and basic drugs. Eur. J. Clin. Pharmacol. 28:601-605.
  2. Bryant, M. P. and I. M. Allison. 1961. An improved non-selective culture medium for animal bacterial and its use in determining diurnal variation in numbers of bacteria in the rumen. J. Dairy Sci. 44:1446-1453.
  3. Droy-Lefain, M. T., Y. Drouet and B. Schatz. 1985. Sodium glycodeoxycholate and spinability of gastrointestinal mucus: Protective effect of smectite. Gastroenterology, 88 Suppl. 2:1369.
  4. Hawksworth, G. M., B. S. Drasar and M. J. Hill. 1971. Intestinal bacteria and the hydrolysis of glycosidic bonds. J. Med. Microbiol. 4:451-459.
  5. Wang, C. L., 2000. The Guide of Practical Management Birds in China. Shanghai Science and Technology Press, Shanghai, China, pp. 192-198.
  6. Bryant, M. P. 1972. Commentary on the Hungate technique for culture for anaerobic bacteria. Am. J. Clin. Nutr. 25:1324-1330.
  7. Stutz, M. W. and G. C. Lawton. 1984. Effects of diet and antimicrobials on growth, feed efficiency, intestinal Clostridium perfringens and ileal weight of broiler chicks. Poult. Sci. 63:2036-2042.
  8. Angulo, E., J. Brufau and E. Esteve-Garcia. 1995. Effect of sepiolite on pellet durability in feeds differing in fat and fibre content. Anim. Feed Sci. Technol. 53:233-241.
  9. Dale, J., M. Kowalska and D. L. Cocke. 1991. Interactions of montmorillonite with organic compounds-adsorptive and catalytic properties. Chemosphere 22:769-798.
  10. Fuller, R., M. E. Coates and G. F. Harrison. 1979. The influence of specific bacteria and a filterable agent on the growth of gnotobiotic chicks. J. Appl. Bacterial. 46:335-342.
  11. Jin, L. Z., Y. W. Ho, N. Abdullah, H. Kudo and S. Jalaludin. 1997. Studies on the intestinal microflora of chicken under tropical condition. Asian-Aust. J. Anim. Sci. 10:495-504.
  12. Kaim, W. and B. Schwederski. 1994. Bioorganic Chemistry. Inorganic Elements in the Chemistry of Life. Wiley, Chichester, p.214.
  13. Poulsen, H. D. and N. Oksbjerg. 1995. Effects of dietary inclusion of a zeolite (clinoptilolite) on performance and protein metabolism of young growing pigs. Anim. Feed Sci. Technol. 53:297- 303.
  14. Holdeman, L. V., E. P. Cato and W. E. C. Moore. 1977. Anaerobic laboratory mannual, 4th edn. Blacksburg: Virginia Polytechnic Institute and State University, pp.51-70.
  15. Goldin, B. R. and S. L. Gorbach. 1976. The relationship between diet and rat fecal bacterial enzymes implicated in colon cancer. J. Natl. Cancer Inst. 57:371-377.
  16. Salanitro, J. P., I. G. Blake, P. A. Muirhead, M. Maglio and J. R. Goodman. 1978. Bacteria isolated from the duodenum, ileum and cecum of young chicks. Appl. Environ.Microbiol. 35:782-790.
  17. SAS. Institute Inc., 1989. SAS/STAT User’sGuide, Version 6. SAS Institute Inc., Cary, North Carolina.
  18. Nordic Committee on Food Analysis. 1997. Clostridium perfringens. Determination in foods. Proposed method No. 95. 3rd ed. Statens tekniska forskningscentral, Bio-och livsmedelsteknik, 02044 VTT, Finland.
  19. Lowry, O. H., N. J. Rosenbrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  20. Jin, L. Z., Y. W. Ho, N. Abdullah and S. Jalaludin. 2000. Digestive and Bacterial enzyme activities in broilers fed diets supplemented with lactobacillus cultures. Poult. Sci. 79:886-891.
  21. Ramos, A. J. and E. Hernandez. 1996. In vitro aflatoxin adsorption by means of a montmorillonite silicate. A study of adsorption isotherms. Anim. Feed Sci. Technol. 62:263-269.
  22. He, H. P., J. G. Guo, X. D. Xie and J. L. Pen. 1999. Experimental studies on the selective adsorption of heavy metal on montmorillonite, illite and kaolinite and the influence of medium conditions. Acta Mineralogica Sinica 19:231-235.
  23. Munoa, F. J. and R. Pares. 1988. Selective medium for the isolation and enumeration of bifidobacterium spp. Appl. Environ. Microbiol. 54:1715-1718.
  24. Ouhida, I., J. F. Perez, J. Piedrafita and J. Gasa. 2000. The effects of sepiolite in broiler chicken diets of high, medium and low viscosity. Productive performance and nutritive value. Anim. Feed Sci. Technol. 85:183-194.
  25. Theng, B. K. G., S. Hayashi, M. Soma and H. Esyama. 1997. Nuclear magnetic resonance and X-ray photoelectron spectroscopic investigation of Lithium migration in montmorillonite. Clays Clay Miner. 45:718-723.
  26. Cik, G., H. Bujdakova and F. Sersen. 2001. Study of fungicidal and antibacterial effect of the Cu (II)-complexes of thiophene oligomers synthesized in ZSM-5 zeolite channels. Chemosphere 44:313-319.
  27. Hu, X. R., G. L. Lu, L. S. Chen., J. M. Gu and Y. Zhang. 2002. Study on the mechanism of the interaction between montmorillonite and bacterium. Acta Pharmaceutica Sinica 37:718-720.
  28. Xu, Z. R., X. T. Zou, C. H. Hu, M. S. Xia, X. A. Zhan and M. Q. Wang. 2002. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of growing pigs. Asian-Aust. J. Anim. Sci. 15:1784-1789.
  29. Drasar, B. S. and M. J. Hill. 1974. Human Intestinal Flora. Academic Press, London, UK.
  30. Elam, J. F., R. L. Jacobs, W. L. Tidwell, L. L. Gee and J. R. Couch. 1953. Possible mechanism involved in the growth-promoting responses obtained from antibiotics. J. Nutr. 49:307-317.
  31. Stadler, M. and P. W. Schindler. 1993. Modeling of $H^+$ and $Cu^{2+}$ adsorption on calcium-montmorillonite. Clays Clay Miner. 41:288-296.
  32. Borchardt, G. 1989. Smectites. In: (Ed. J. B. Dixon, S. B. Weed), Minerals in Soil Environments. Soil Science of America, Madison, WI, pp. 675-727.
  33. Nalini, N., K. Sabitha, P. Viswanathan and V. P. Menon. 1998. Influence of spices on the bacterial (enzyme) activity in experimental colon cancer. J. Ethnopharrrmacology 62:15-24.

Cited by

  1. Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2 vol.34, pp.6, 2013,